Alden KP, Dhondt-Cordelier S, McDonald KL, Reape TJ, Ng CK, McCabe PF, Leaver CJ. 2011. Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants. Biochemical and Biophysical Research Communications 410: 574–580.
Ali U, Li H, Wang X, Guo L. 2018. Emerging roles of sphingolipid signaling in plant response to biotic and abiotic stresses. Molecular Plant 11: 1328–1343.
Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, Dunn T. 1998. The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Delta mutant. Journal of Biological Chemistry 273: 30688–30694.
Begum MA, Shi XX, Tan Y, Zhou WW, Hannun Y, Obeid L, Mao C, Zhu ZR. 2016. Molecular characterization of rice OsLCB2a1 gene and functional analysis of its role in insect resistance. Frontiers in Plant Science 7: 1789.
Bi FC, Liu Z, Wu JX, Liang H, Xi XL, Fang C, Sun TJ, Yin J, Dai GY, Rong C, et al. 2014. Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H2O2 bursts. Plant Cell 26: 3449–3467.
Cacas JL, Bure C, Furt F, Maalouf JP, Badoc A, Cluzet S, Schmitter JM, Antajan E, Mongrand S. 2013. Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity. Phytochemistry 96: 191–200.
Cacas JL, Bure C, Grosjean K, Gerbeau-Pissot P, Lherminier J, Rombouts Y, Maes E, Bossard C, Gronnier J, Furt F, et al. 2016. Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiology 170: 367–384.
Cantrel C, Vazquez T, Puyaubert J, Reze N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E. 2011. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytologist 189: 415–427.
Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB. 2006. The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell 18: 3576–3593.
Chen M, Markham JE, Cahoon EB. 2012. Sphingolipid Delta8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. The Plant Journal 69: 769–781.
Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM. 2003. Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423: 651–654.
Coursol S, Fromentin J, Noirot E, Briere C, Robert F, Morel J, Liang YK, Lherminier J, Simon-Plas F. 2015. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells. New Phytologist 205: 1239–1249.
Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S. 2005. Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiology 137: 724–737.
Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha DK, Willmitzer L. 2012. Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. The Plant Journal 72: 972–982.
Dutilleul C, Benhassaine-Kesri G, Demandre C, Reze N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I. 2012. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytologist 194: 181–191.
Dutilleul C, Chavarria H, Reze N, Sotta B, Baudouin E, Guillas I. 2015. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress. Plant, Cell & Environment 38: 2688–2697.
Fang L, Ishikawa T, Rennie EA, Murawska GM, Lao J, Yan J, Tsai AY, Baidoo EE, Xu J, Keasling JD, et al. 2016. Loss of inositol phosphorylceramide sphingolipid mannosylation induces plant immune responses and reduces cellulose content in Arabidopsis. Plant Cell 28: 2991–3004.
Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43: 205–227.
Goto H, Nishikawa K, Shionoya N, Taniguchi M, Igarashi T. 2012. Determination of sphingoid bases from hydrolyzed glucosylceramide in rice and wheat by online post-column high-performance liquid chromatography with O-phthalaldehyde derivatization. Journal of Oleo Science 61: 681–688.
Guillas I, Guellim A, Reze N, Baudouin E. 2013. Long chain base changes triggered by a short exposure of Arabidopsis to low temperature are altered by AHb1 non-symbiotic haemoglobin overexpression. Plant Physiology and Biochemistry 63: 191–195.
Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X. 2012. Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. Journal of Biological Chemistry 287: 8286–8296.
Guo L, Mishra G, Taylor K, Wang X. 2011. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. Journal of Biological Chemistry 286: 13336–13345.
Guo L, Wang X. 2012. Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling. Frontiers in Plant Science 3: 51.
Huang X, Zhang Y, Zhang X, Shi Y. 2017. Long-chain base kinase1 affects freezing tolerance in Arabidopsis thaliana. Plant Science 259: 94–103.
Imai H, Nishiura H. 2005. Phosphorylation of sphingoid long-chain bases in Arabidopsis: functional characterization and expression of the first sphingoid long-chain base kinase gene in plants. Plant Cell Physiology 46: 375–380.
Ines C, Parra-Lobato MC, Paredes MA, Labrador J, Gallardo M, Saucedo-Garcia M, Gavilanes-Ruiz M, Gomez-Jimenez MC. 2018. Sphingolipid distribution, content and gene expression during olive-fruit development and ripening. Frontiers in Plant Science 9: 28.
Ishikawa T, Aki T, Yanagisawa S, Uchimiya H, Kawai-Yamada M. 2015. Overexpression of BAX INHIBITOR-1 links plasma membrane microdomain proteins to stress. Plant Physiology 169: 1333–1343.
Ishikawa T, Fang L, Rennie EA, Sechet J, Yan J, Jing B, Moore W, Cahoon EB, Scheller HV, Kawai-Yamada M, et al. 2018. Glucosamine inositolphosphorylceramide transferase1 (GINT1) is a GlcNAc-containing glycosylinositol phosphorylceramide glycosyltransferase. Plant Physiology 177: 938–952.
Islam MN, Jacquemot MP, Coursol S, Ng CK. 2012. Sphingosine in plants–more riddles from the Sphinx? New Phytologist 193: 51–57.
Kawaguchi M, Imai H, Naoe M, Yasui Y, Ohnishi M. 2000. Cerebrosides in grapevine leaves: distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Bioscience, Biotechnology, and Biochemistry 64: 1271–1273.
Kimberlin AN, Han G, Luttgeharm KD, Chen M, Cahoon RE, Stone JM, Markham JE, Dunn TM, Cahoon EB. 2016. ORM expression alters sphingolipid homeostasis and differentially affects ceramide synthase activity. Plant Physiology 172: 889–900.
Kimberlin AN, Majumder S, Han G, Chen M, Cahoon RE, Stone JM, Dunn TM, Cahoon EB. 2013. Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity. Plant Cell 25: 4627–4639.
König S, Feussner K, Schwarz M, Kaever A, Iven T, Landesfeind M, Ternes P, Karlovsky P, Lipka V, Feussner I. 2012. Arabidopsis mutants of sphingolipid fatty acid alpha-hydroxylases accumulate ceramides and salicylates. New Phytologist 196: 1086–1097.
Lachaud C, Prigent E, Thuleau P, Grat S, Da Silva D, Briere C, Mazars C, Cotelle V. 2013. 14-3-3-regulated Ca2+-dependent protein kinase CPK3 is required for sphingolipid-induced cell death in Arabidopsis. Cell Death & Differentiation 20: 209–217.
Lee Y, Assmann SM. 1991. Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata. Proceedings of the National Academy of Sciences, USA 88: 2127–2131.
Lenarcic T, Albert I, Bohm H, Hodnik V, Pirc K, Zavec AB, Podobnik M, Pahovnik D, Zagar E, Pruitt R, et al. 2017. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358: 1431–1434.
Li J, Bi FC, Yin J, Wu JX, Rong C, Wu JL, Yao N. 2015. An Arabidopsis neutral ceramidase mutant ncer1 accumulates hydroxyceramides and is sensitive to oxidative stress. Frontiers in Plant Science 6: 460.
Li J, Yin J, Rong C, Li KE, Wu JX, Huang LQ, Zeng HY, Sahu SK, Yao N. 2016. Orosomucoid proteins interact with the small subunit of serine palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in Arabidopsis. Plant Cell 28: 3038–3051.
Li M, Zhang K, Long R, Sun Y, Kang J, Zhang T, Cao S. 2017. iTRAQ-based comparative proteomic analysis reveals tissue-specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environmental & Experimental Botany 143: 99–114.
Lung SC, Chye ML. 2019. Arabidopsis acyl-CoA-binding proteins regulate the synthesis of lipid signals. New Phytologist 223: 113–117.
Luttgeharm KD, Chen M, Mehra A, Cahoon RE, Markham JE, Cahoon EB. 2015. Overexpression of Arabidopsis ceramide synthases differentially affects growth, sphingolipid metabolism, programmed cell death, and mycotoxin resistance. Plant Physiology 169: 1108–1117.
Luttgeharm KD, Kimberlin AN, Cahoon EB. 2016. Plant sphingolipid metabolism and function. Sub-Cellular Biochemistry 86: 249–286.
Magnin-Robert M, Le Bourse D, Markham J, Dorey S, Clement C, Baillieul F, Dhondt-Cordelier S. 2015. Modifications of sphingolipid content affect tolerance to hemibiotrophic and necrotrophic pathogens by modulating plant defense responses in Arabidopsis. Plant Physiology 169: 2255–2274.
Mamode Cassim A, Gouguet P, Gronnier J, Laurent N, Germain V, Grison M, Boutte Y, Gerbeau-Pissot P, Simon-Plas F, Mongrand S. 2019. Plant lipids: key players of plasma membrane organization and function. Progress in Lipid Research 73: 1–27.
Markham JE, Li J, Cahoon EB, Jaworski JG. 2006. Separation and identification of major plant sphingolipid classes from leaves. Journal of Bioogical Chemistry 281: 22684–22694.
Michaelson LV, Napier JA, Molino D, Faure JD. 2016. Plant sphingolipids: their importance in cellular organization and adaption. Biochimica et Biophysica Acta 1861: 1329–1335.
Michaelson LV, Zauner S, Markham JE, Haslam RP, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, et al. 2009. Functional characterization of a higher plant sphingolipid Delta4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiology 149: 487–498.
Mina JG, Okada Y, Wansadhipathi-Kannangara NK, Pratt S, Shams-Eldin H, Schwarz RT, Steel PG, Fawcett T, Denny PW. 2010. Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase. Plant Molecular Biology 73: 399–407.
Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M, Kawamura Y, Uemura M. 2009. Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis thaliana during cold acclimation. Plant and Cell Physiology 50: 341–359.
Molino D, Van der Giessen E, Gissot L, Hematy K, Marion J, Barthelemy J, Bellec Y, Vernhettes S, Satiat-Jeunemaitre B, Galli T, et al. 2014. Inhibition of very long acyl chain sphingolipid synthesis modifies membrane dynamics during plant cytokinesis. Biochimica et Biophysica Acta 1842: 1422–1430.
Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C. 1998. Lipid trafficking in plant cells. Progress in Lipid Research 37: 371–391.
Mortimer JC, Yu X, Albrecht S, Sicilia F, Huichalaf M, Ampuero D, Michaelson LV, Murphy AM, Matsunaga T, Kurz S, et al. 2013. Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in Arabidopsis. Plant Cell 25: 1881–1894.
Msanne J, Chen M, Luttgeharm KD, Bradley AM, Mays ES, Paper JM, Boyle DL, Cahoon RE, Schrick K, Cahoon EB. 2015. Glucosylceramides are critical for cell-type differentiation and organogenesis, but not for cell viability in Arabidopsis. The Plant Journal 84: 188–201.
Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K. 2000. Trienoic fatty acids and plant tolerance of high temperature. Science 287: 476–479.
Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, Kawai-Yamada M, Shimamoto K. 2016. Plasma membrane microdomains are essential for Rac1-RbohB/H-mediated immunity in rice. Plant Cell 28: 1966–1983.
Nagano M, Ishikawa T, Ogawa Y, Iwabuchi M, Nakasone A, Shimamoto K, Uchimiya H, Kawai-Yamada M. 2014. Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. Planta 240: 77–89.
Nakagawa N, Kato M, Takahashi Y, Shimazaki K, Tamura K, Tokuji Y, Kihara A, Imai H. 2012. Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. Journal of Plant Research 125: 439–449.
Ng CK, Coursol S. 2012. New insights into phospholipase d and sphingosine kinase activation in Arabidopsis. Frontiers in Physiology 3: 67.
Pata MO, Hannun YA, Ng CK. 2010. Plant sphingolipids: decoding the enigma of the Sphinx. New Phytologist 185: 611–630.
Pata MO, Wu BX, Bielawski J, Xiong TC, Hannun YA, Ng CK. 2008. Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice. The Plant Journal 55: 1000–1009.
Peters C, Li M, Narasimhan R, Roth M, Welti R, Wang X. 2010. Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22: 2642–2659.
Qin X, Zhang RX, Ge S, Zhou T, Liang YK. 2017. Sphingosine kinase AtSPHK1 functions in fumonisin B1-triggered cell death in Arabidopsis. Plant Physiology and Biochemistry 119: 70–80.
Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, et al. 2014. Identification of a sphingolipid alpha-glucuronosyltransferase that is essential for pollen function in Arabidopsis. Plant Cell 26: 3314–3325.
Rivas-San Vicente M, Larios-Zarate G, Plasencia J. 2013. Disruption of sphingolipid biosynthesis in Nicotiana benthamiana activates salicylic acid-dependent responses and compromises resistance to Alternaria alternata f. sp. lycopersici. Planta 237: 121–136.
Routaboul JM, Skidmore C, Wallis JG, Browse J. 2012. Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids. Journal of Experimental Botany 63: 1435–1443.
Sanchez-Rangel D, Rivas-San Vicente M, de la Torre-Hernandez ME, Najera-Martinez M, Plasencia J. 2015. Deciphering the link between salicylic acid signaling and sphingolipid metabolism. Frontiers in Plant Science 6: 125.
Saucedo-Garcia M, Guevara-Garcia A, Gonzalez-Solis A, Cruz-Garcia F, Vazquez-Santana S, Markham JE, Lozano-Rosas MG, Dietrich CR, Ramos-Vega M, Cahoon EB, et al. 2011. MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. New Phytologist 191: 943–957.
Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, et al. 2007. Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Research 17: 1030–1040.
Shi C, Yin J, Liu Z, Wu JX, Zhao Q, Ren J, Yao N. 2015. A systematic simulation of the effect of salicylic acid on sphingolipid metabolism. Frontiers in Plant Science 6: 186.
Spassieva S, Hille J. 2003. Plant sphingolipids today - are they still enigmatic? Plant Biology 5: 125–136.
Takahashi D, Imai H, Kawamura Y, Uemura M. 2016. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology 72: 123–134.
Tanaka T, Kida T, Imai H, Morishige J, Yamashita R, Matsuoka H, Uozumi S, Satouchi K, Nagano M, Tokumura A. 2013. Identification of a sphingolipid-specific phospholipase D activity associated with the generation of phytoceramide-1-phosphate in cabbage leaves. FEBS Journal 280: 3797–3809.
Tartaglio V, Rennie EA, Cahoon R, Wang G, Baidoo E, Mortimer JC, Cahoon EB, Scheller HV. 2017. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis. The Plant Journal 89: 278–290.
Ternes P, Feussner K, Werner S, Lerche J, Iven T, Heilmann I, Riezman H, Feussner I. 2011. Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytologist 192: 841–854.
Thomma BP, Penninckx IA, Broekaert WF, Cammue BP. 2001. The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology 13: 63–68.
Tortosa M, Cartea ME, Rodriguez VM, Velasco P. 2018. Unraveling the metabolic response of Brassica oleracea exposed to Xanthomonas campestris pv. campestris. Journal of the Science of Food and Agriculture 98: 3675–3683.
Tovuu A, Zulfugarov IS, Wu G, Kang IS, Kim C, Moon BY, An G, Lee CH. 2016. Rice mutants deficient in omega-3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures. Plant Physiology and Biochemistry 109: 525–535.
Tsegaye Y, Richardson CG, Bravo JE, Mulcahy BJ, Lynch DV, Markham JE, Jaworski JG, Chen M, Cahoon EB, Dunn TM. 2007. Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. Journal of Biological Chemistry 282: 28195–28206.
Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, et al. 2008. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20: 3163–3179.
Wilkinson SW, Pastor V, Paplauskas S, Pétriacq P, Luna E. 2017. Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathology 67: 30–41.
Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE, Hetherington AM. 2008. Involvement of sphingosine kinase in plant cell signalling. The Plant Journal 56: 64–72.
Wu JX, Li J, Liu Z, Yin J, Chang ZY, Rong C, Wu JL, Bi FC, Yao N. 2015a. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance. The Plant Journal 81: 767–780.
Wu JX, Wu JL, Yin J, Zheng P, Yao N. 2015b. Ethylene modulates sphingolipid synthesis in Arabidopsis. Frontiers in Plant Science 6: 1122.
Xie LJ, Chen QF, Chen MX, Yu LJ, Huang L, Chen L, Wang FZ, Xia FN, Zhu TR, Wu JX, et al. 2015a. Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis. PLoS Genetics 11: e1005143.
Xie LJ, Yu LJ, Chen QF, Wang FZ, Huang L, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, et al. 2015b. Arabidopsis acyl-CoA-binding protein ACBP3 participates in plant response to hypoxia by modulating very-long-chain fatty acid metabolism. The Plant Journal 81: 53–67.
Yanagawa D, Ishikawa T, Imai H. 2017. Synthesis and degradation of long-chain base phosphates affect fumonisin B1-induced cell death in Arabidopsis thaliana. Journal of Plant Research 130: 571–585.
Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W. 2010. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytologist 188: 762–773.
Zhang H, Huang L, Li X, Ouyang Z, Yu Y, Li D, Song F. 2013. Overexpression of a rice long-chain base kinase gene OsLCBK1 in tobacco improves oxidative stress tolerance. Plant Biotechnology 30: 9–16.
Zhang H, Jin X, Huang L, Hong Y, Zhang Y, Ouyang Z, Li X, Song F, Li D. 2014. Molecular characterization of rice sphingosine-1-phosphate lyase gene OsSPL1 and functional analysis of its role in disease resistance response. Plant Cell Reports 33: 1745–1756.
Zhang H, Zhai J, Mo J, Li D, Song F. 2012. Overexpression of rice sphingosine-1-phoshpate lyase gene OsSPL1 in transgenic tobacco reduces salt and oxidative stress tolerance. Journal of Integrative Plant Biology 54: 652–662.
Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X. 2009. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21: 2357–2377.
Zheng P, Wu JX, Sahu SK, Zeng HY, Huang LQ, Liu Z, Xiao S, Yao N. 2018. Loss of alkaline ceramidase inhibits autophagy in Arabidopsis and plays an important role during environmental stress response. Plant, Cell & Environment 41: 837–849.
Zhou Y, Zeng L, Fu X, Mei X, Cheng S, Liao Y, Deng R, Xu X, Jiang Y, Duan X, et al. 2016. The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato. Scientific Reports 6: 38742.
Zinta G, AbdElgawad H, Peshev D, Weedon JT, Van den Ende W, Nijs I, Janssens IA, Beemster GTS, Han A. 2018. Dynamics of metabolic responses to combined heat and drought spells in Arabidopsis thaliana under ambient and rising atmospheric CO2. Journal of Experimental Botany 69: 2159–2170.