A phase Ib/II study of xentuzumab, an IGF-neutralising antibody, combined with exemestane and everolimus in hormone receptor-positive, HER2-negative locally advanced/metastatic breast cancer.
Breast cancer; HER2-negative; Hormone receptor-positive; Insulin-like growth factor; Xentuzumab; oncology
Abstract :
[en] BACKGROUND: Xentuzumab-a humanised IgG1 monoclonal antibody-binds IGF-1 and IGF-2, inhibiting their growth-promoting signalling and suppressing AKT activation by everolimus. This phase Ib/II exploratory trial evaluated xentuzumab plus everolimus and exemestane in hormone receptor-positive, locally advanced and/or metastatic breast cancer (LA/MBC). METHODS: Patients with hormone receptor-positive/HER2-negative LA/MBC resistant to non-steroidal aromatase inhibitors were enrolled. Maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of xentuzumab/everolimus/exemestane were determined in phase I (single-arm, dose-escalation). In phase II (open-label), patients were randomised 1:1 to the RP2D of xentuzumab/everolimus/exemestane or everolimus/exemestane alone. Randomisation was stratified by the presence of visceral metastases. Primary endpoint was progression-free survival (PFS). RESULTS: MTD was determined as xentuzumab 1000 mg weekly plus everolimus 10 mg/day and exemestane 25 mg/day. A total of 140 patients were enrolled in phase II (70 to each arm). Further recruitment was stopped following an unfavourable benefit-risk assessment by the internal Data Monitoring Committee appointed by the sponsor. Xentuzumab was discontinued; patients could receive everolimus/exemestane if clinically indicated. Median PFS was 7.3 months (95% CI 3.3-not calculable) in the xentuzumab/everolimus/exemestane group and 5.6 months (3.7-9.1) in the everolimus/exemestane group (hazard ratio 0.97, 95% CI 0.57-1.65; P = 0.9057). In a pre-specified subgroup of patients without visceral metastases at screening, xentuzumab/everolimus/exemestane showed evidence of PFS benefit versus everolimus/exemestane (hazard ratio 0.21 [0.05-0.98]; P = 0.0293). Most common any-cause adverse events in phase II were diarrhoea (29 [41.4%] in the xentuzumab/everolimus/exemestane group versus 20 [29.0%] in the everolimus/exemestane group), mucosal inflammation (27 [38.6%] versus 21 [30.4%]), stomatitis (24 [34.3%] versus 24 [34.8%]), and asthenia (21 [30.0%] versus 24 [34.8%]). CONCLUSIONS: Addition of xentuzumab to everolimus/exemestane did not improve PFS in the overall population, leading to early discontinuation of the trial. Evidence of PFS benefit was observed in patients without visceral metastases when treated with xentuzumab/everolimus/exemestane, leading to initiation of the phase II XENERA™-1 trial (NCT03659136). TRIAL REGISTRATION: ClinicalTrials.gov, NCT02123823 . Prospectively registered, 8 March 2013.
Disciplines :
Oncology
Author, co-author :
Schmid, Peter
Sablin, Marie-Paule
Bergh, Jonas
Im, Seock-Ah
Lu, Yen-Shen
Martínez, Noelia
Neven, Patrick
Lee, Keun Seok
Morales, Serafín
Pérez-Fidalgo, J. Alejandro
Adamson, Douglas
Gonçalves, Anthony
Prat, Aleix
Jerusalem, Guy ; Université de Liège - ULiège > Département des sciences cliniques > Oncologie
A phase Ib/II study of xentuzumab, an IGF-neutralising antibody, combined with exemestane and everolimus in hormone receptor-positive, HER2-negative locally advanced/metastatic breast cancer.
Cardoso F, Senkus E, Costa A, Papadopoulos E, Aapro M, André F, et al. 4th ESO–ESMO international consensus guidelines for advanced breast cancer (ABC 4)†. Ann Oncol. 2018;29(8):1634–57. DOI: 10.1093/annonc/mdy192
Johnston SR. Enhancing endocrine therapy for hormone receptor-positive advanced breast cancer: cotargeting signaling pathways. J Natl Cancer Inst. 2015;107(10):djv212.
Slamon DJ, Neven P, Chia S, Fasching PA, De Laurentiis M, Im S-A, et al. Overall survival with ribociclib plus fulvestrant in advanced breast cancer. N Engl J Med. 2020;382(6):514–24. DOI: 10.1056/NEJMoa1911149
Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X, et al. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy-MONARCH 2: a randomized clinical trial. JAMA Oncol. 2019;6(1):116–24. DOI: 10.1001/jamaoncol.2019.4782
Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013;45(12):1446–51. DOI: 10.1038/ng.2823
Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9. DOI: 10.1056/NEJMoa1109653
Piccart M, Hortobagyi GN, Campone M, Pritchard KI, Lebrun F, Ito Y, et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2dagger. Ann Oncol. 2014;25(12):2357–62. DOI: 10.1093/annonc/mdu456
Cook M, Rabadi LA, Mitri ZI. Everolimus and exemestane for the treatment of metastatic hormone receptor-positive breast cancer patients previously treated with CDK4/6 inhibitor based therapies. J Clin Oncol. 2019;37(15_suppl):1058. DOI: 10.1200/JCO.2019.37.15_suppl.1058
Simpson A, Petnga W, Macaulay VM, Weyer-Czernilofsky U, Bogenrieder T. Insulin-like growth factor (IGF) pathway targeting in cancer: role of the IGF axis and ppportunities for future combination studies. Target Oncol. 2017;12(5):571–97. DOI: 10.1007/s11523-017-0514-5
Friedbichler K, Hofmann MH, Kroez M, Ostermann E, Lamche HR, Koessl C, et al. Pharmacodynamic and antineoplastic activity of BI 836845, a fully human IGF ligand-neutralizing antibody, and mechanistic rationale for combination with rapamycin. Mol Cancer Ther. 2014;13(2):399–409. DOI: 10.1158/1535-7163.MCT-13-0598
Rieunier G, Wu X, Macaulay VM, Lee AV, Weyer-Czernilofsky U, Bogenrieder T. Bad to the bone: the role of the insulin-like growth factor axis in osseous metastasis. Clin Cancer Res. 2019;25(12):3479–85. DOI: 10.1158/1078-0432.CCR-18-2697
LeBedis C, Chen K, Fallavollita L, Boutros T, Brodt P. Peripheral lymph node stromal cells can promote growth and tumorigenicity of breast carcinoma cells through the release of IGF-I and EGF. Int J Cancer. 2002;100(1):2–8. DOI: 10.1002/ijc.10481
de Bono J, Lin C-C, Chen L-T, Corral J, Michalarea V, Rihawi K, et al. Two first-in-human studies of xentuzumab, a humanised insulin-like growth factor (IGF)-neutralising antibody, in patients with advanced solid tumours. Br J Cancer. 2020;122(9):1324–32. DOI: 10.1038/s41416-020-0774-1
Roberston J, Di Leo A, Fazal M, Lichfield J, Ellis M. Abstract PD5-09: Fulvestrant for hormone receptor-positive advanced breast cancer in patients with visceral vs non-visceral metastases: findings from FALCON, FIRST, and CONFIRM. Cancer Res. 2018;78(4_suppl):PD5–09.
Hiraga T, Myoui A, Hashimoto N, Sasaki A, Hata K, Morita Y, et al. Bone-derived IGF mediates crosstalk between bone and breast cancer cells in bony metastases. Cancer Res. 2012;72(16):4238–49. DOI: 10.1158/0008-5472.CAN-11-3061
Li ZJ, Ying XJ, Chen HL, Ye PJ, Chen ZL, Li G, et al. Insulin-like growth factor-1 induces lymphangiogenesis and facilitates lymphatic metastasis in colorectal cancer. World J Gastroenterol. 2013;19(43):7788–94. DOI: 10.3748/wjg.v19.i43.7788
Morgillo F, De Vita F, Antoniol G, Orditura M, Auriemma PP, Diadema MR, et al. Serum insulin-like growth factor 1 correlates with the risk of nodal metastasis in endocrine-positive breast cancer. Curr Oncol. 2013;20(4):e283–8. DOI: 10.3747/co.20.1380
Spiliotaki M, Mavroudis D, Kokotsaki M, Vetsika EK, Stoupis I, Matikas A, et al. Expression of insulin-like growth factor-1 receptor in circulating tumor cells of patients with breast cancer is associated with patient outcomes. Mol Oncol. 2018;12(1):21–32. DOI: 10.1002/1878-0261.12114