Arboretum; dispersal; gymnosperm; invasiveness; non native trees; propagule pressure; regeneration
Abstract :
[fr] Identifying emerging invasive species is a priority to implement early preventive and control actions. In terms of the number of invasive tree species, forestry represents the second largest pathway of introduction, with an invasive debt likely existing for alien conifers in Europe. In the early 1900s, a network of arboreta was established in southern Belgium to assess the wood production potential of prospective conifer and broadleaved species. Here, we use eight arboreta as natural experiments to identify alien conifers presenting invasive behavior. Through systematic sampling, we quantified the natural regeneration of alien conifers and recorded local environmental variables. For each species, regeneration density, dispersal distances, and age structure were analyzed. Generalized mixed effects models were fitted to test the effect of planted area and tree-stand type on regeneration. The environmental space occupied by regenerating alien conifers was evaluated using principal component analysis. Out of 31 planted alien species, 15 (48%) were identified in natural regeneration, of which eight (26%) exhibited important regeneration density and dispersal distances. The most invasive species were Tsuga heterophylla and Abies grandis, confirming earlier field observations. Both large planted areas and areas planted with alien conifer species increased the density of regeneration. Species that had the highest regeneration density tolerated a wide range of environmental conditions, including shaded understory, which could lead to the invasion of mature, undisturbed forests. This study showed that 17% of the studied alien conifers are potentially invasive because they show important regeneration, long-distance dispersal, and, of importance, have already produced offspring that have matured and are capable of creating new satellite populations. In conclusion, our results provide a guideline for future planting operations, recommending extreme caution when planting these species in the temperate forests of Western Europe. ---- Identifier les espèces invasives émergentes est prioritaire afin de pouvoir mettre des actions de contrôle en place. En termes de nombre d'espèces d'arbres invasifs, la sylviculture est la deuxième voie d'introduction la plus importante, et une dette d'invasion existe probablement pour les conifères en Europe. Au début des années 1900, un réseau d'arboreta forestier fut établi en Belgique afin d'étudier le potentiel de production de diverses espèces résineuses et feuillues. Dans cette étude, nous avons utilisé huit arboreta pour identifier les espèces de conifères exotiques présentant un caractère invasif. A travers un échantillonnage systématique, nous avons quantifié la régénération naturelle de conifères exotiques et mesuré des données environnementales locales. Pour chaque espèce, la densité de régénération, les distances de dispersion et la structure d'âge furent analysées. Des modèles généralisés à effets mixtes furent utilisés pour tester l'effet de la surface de plantation et du type de peuplement sur la densité de régénération. L'espace environnemental de chaque espèce fut également délimité à l'aide d'une PCA. Sur les 31 espèces de conifères fréquement plantées, 15 (48 %) ont été identifiées dans la régénération naturelle, et huit (26 %) se régénèrent et se dispersent abondamment. Les espèces les plus invasives sont Tsuga heterophylla et Abies grandis, confirmant des observations de terrain, suivis de Thuja plicata et Pseudotsuga menziesii. De larges plantations et des peuplements résineux augmentent tout deux la densité de régénération de conifères exotiques. Les espèces se régénérant le plus tolèrent des conditions environnementales assez larges, dont un sous-étage ombragé, ce qui pourrait permettre l'invasion de forêts matures. Cette étude montre que 17 % des conifères étudiés sont potentiellement invasifs car ils se régénèrent abondamment, se dispersent à longue distance et produisent des descendants matures, capables de créer des populations satellites. En conclusion, notre étude fournit des recommandations pour de futures plantations, et nous appelons à la prudence concernant la plantation de ces espèces.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Fanal, Aurore ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Mahy, Grégory ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Fayolle, Adeline ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Monty, Arnaud ; Université de Liège - ULiège > Département GxABT > Biodiversité et Paysage
Language :
English
Title :
Arboreta reveal the invasive potential of several conifer species in the temperate forests of western Europe
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bah B, Engels P, Colinet G, Legrain X (2007) Légende de la Carte Numérique des Sols de Wallonie (Belgique). Gembloux. https://www.fichierecologique.be/resources/LCNSW_V2.pdf [August 1, 2019]
Bates D, Maechler M, Bolker M, Walker S (2015) Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67: 1–48. https://doi.org/10.18637/jss.v067.i01
Bauwens S (2020) Requête sur l’évolution des surfaces occupées par espèce forestière en Wallonie de 1980 et 2010. http://iprfw.spw.wallonie.be
Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin M-J, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Broncano MJ, Vilà M, Boada M (2005) Evidence of Pseudotsuga menziesii naturalization in montane Mediterranean forests. Forest Ecology and Management 211: 257–263. https://doi.org/10.1016/j.foreco.2005.02.055
Brundu G, Richardson DM (2016) Planted forests and invasive alien trees in Europe: A Code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota 30: 5–47. https://doi.org/10.3897/neobiota.30.7015
Brundu G, Pauchard A, Pyšek P, Pergl J, Bindewald AM, Brunori A, Canavan S, Campagnaro T, Celesti-Grapow L, Dechoum M de S, Dufour-Dror J-M, Essl F, Flory SL, Genovesi P, Guarino F, Guangzhe L, Hulme PE, Jäger H, Kettle CJ, Krumm F, Langdon B, Lapin K, Lozano V, Le Roux JJ, Novoa A, Nuñez MA, Porté AJ, Silva JS, Schaffner U, Sitzia T, Tanner R, Tshidada N, Vítkovâ M, Westergren M, Wilson JRU, Richardson DM (2020) Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 61: 65–116. https://doi.org/10.3897/neobiota.61.58380
Campioli M, Ponette Q, Vincke C (2009) ECHOES – Belgian country report. Expected Climate Change and Options for European Silviculture. http://docs.gip-ecofor.org/public/echoes/Echoes_Belgium-report_sept09.pdf [January 24, 2018]
Carrillo-Gavilán MA, Vilà M (2010) Little evidence of invasion by alien conifers in Europe. Diversity and Distributions 16: 203–213. https://doi.org/10.1111/j.1472-4642.2010.00648.x
Dawson W, Burslem DFRP, Hulme PE (2011) The comparative importance of species traits and introduction characteristics in tropical plant invasions. Diversity and Distributions 17: 1111–1121. https://mail.ulg.ac.be/service/home/∼/?auth=co&loc=fr&id=9815&part=2 [September 11, 2018]
Dodet M, Collet C (2012) When should exotic forest plantation tree species be considered as an invasive threat and how should we treat them? Biological Invasions 14: 1765–1778. https://doi.org/10.1007/s10530-012-0202-4
Dray S, Dufour A (2007) The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software 22: 1–20. https://doi.org/10.18637/jss.v022.i04
Dyderski MK, Jagodziński AM (2018) Drivers of invasive tree and shrub natural regeneration in temperate forests. Biological Invasions 20: 2363–2379. https://doi.org/10.1007/s10530-018-1706-3
Ennos R, Cottrell J, Hall J, O’brien D (2019) Is the introduction of novel exotic forest tree species a rational response to rapid environmental change? – A British perspective. Forest Ecology and Management 432: 718–728. https://doi.org/10.1016/j.foreco.2018.10.018
Essl F, Dullinger S, Rabitsch W, Hulme PE, Hulber K, Jarosik V, Kleinbauer I, Krausmann F, Kuhn I, Nentwig W, Vila M, Genovesi P, Gherardi F, Desprez-Loustau M-L, Roques A, Pysek P (2011) Reply to Keller and Springborn: No doubt about invasion debt. Proceedings of the National Academy of Sciences 108: E221–E221. https://doi.org/10.1073/pnas.1107028108
Essl F, Moser D, Dullinger S, Mang T, Hulme PE (2010) Selection for commercial forestry determines global patterns of alien conifer invasions. Diversity and Distributions 16: 911–921. https://doi.org/10.1111/j.1472-4642.2010.00705.x
Fox J, Weisberg S (2019) An R Companion to Applied Regression. Third. Sage, Thousand Oaks. https://socialsciences.mcmaster.ca/jfox/Books/Companion [October 20, 2020]
Galoux A. (1951) Les Principales Essences Forestières de l’Amérique Septentrionale Tempérée. Leur introduction en Belgique. https://www.milieuinfo.be/dms/d/d/workspace/SpacesStore/3859d45b-758d-4ef7-a6ec-25aa16de12e0/170426.pdf
Gil-Moreno D (2018) Potential of noble fir, Norway spruce, western red cedar and western hemlock grown for timber production in Great Britain. International Wood Products Journal 9: 200–200. https://doi.org/10.1080/20426445.2018.1546283
Greene DF, Johnson EA (1993) Seed Mass and Dispersal Capacity in Wind-Dispersed Diaspores. Oikos 67(1): 69–74. https://doi.org/10.2307/3545096
Hansen M, Potapov P, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland T, Kommareddy A, Egorov A, Chini L, Justice C, Townshend J (2013) High-resolution global maps of 21st-century forest cover change. Science 342: 850–853. https://doi.org/10.1126/science.1244693
Harmer R, Beauchamp K, Morgan G (2011) Natural regeneration in western hemlock plantations on ancient woodland sites. https://www.forestry.gov.uk/pdf/FCRN011.pdf/$FILE/FCRN011.pdf [March 14, 2018]
Heger T (2016) Can we predict whether a species will become invasive? In: Krumm F, Vítková L (Eds) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, 78–84.
Hernandez L, Canellas I, Barbeito I (2016) Using National Forest Inventories to assess the factors driving invasion in forest ecosystems: the case of silver wattle and blackwood in northwestern Spain. In: Krumm F, Vítková L (Eds) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, 423 pp.
Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-distance dispersal. The American Naturalist 153: 464–475. https://doi.org/10.1086/303193
Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86: 3212–3218. https://doi.org/10.1890/05-0427
Jagodziński AM, Dyderski MK, Rawlik M, Banaszczak P (2015) Plantation of coniferous trees modifies risk and size of Padus serotina (Ehrh.) Borkh. invasion – Evidence from a Rogów Arboretum case study. Forest Ecology and Management 357: 84–94. https://doi.org/10.1016/j.foreco.2015.08.011
Jagodziński AM, Dyderski MK, Horodecki P, Rawlik K (2018) Limited dispersal prevents Quercus rubra invasion in a 14-species common garden experiment. In: Pysek P (Ed.) Diversity and Distributions 24: 403–414. https://doi.org/10.1111/ddi.12691
Johnson O, More D (2014) Guide Delachaux des arbres d’Europe. Delachaux. Paris, 464 pp.
Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, Van Bodegom PM, Reichstein M, Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O (2011) TRY – a global database of plant traits. Global Change Biology 17: 2905–2935. https://doi.org/10.1111/j.1365-2486.2011.02451.x
van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13: 235–245. https://doi.org/10.1111/j.1461-0248.2009.01418.x
Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pyšek P, Prach K, Rejmánek M, Wade M (Eds) Plant Invasions – General Aspects and Special Problems. SPB Academic Publishing, 15–38. https://link.springer.com/article/10.1023/B:BINV.0000005572.47560.1c
Křivánek M, Pyšek P (2008) Forestry and horticulture as pathways of plant invasions: a database of alien woody plants in the Czech Republic. In: Tokarska-Guzik B, Brock JH, Brundu G, Child L, Daehler CC, Pyšek P (Eds) Plant Invasions: Human perception, ecological impacts and management. Backhuys Publishers, Leiden, The Netherlands, 21–38. http://www.ibot.cas.cz/personal/pysek/pdf/Krivanek,%20Pysek-Woody%20database_Backhuys2008.pdf [February 16, 2018]
Křivánek M, Pyšek P, Jarošík V (2006) Planting History and Propagule Pressure as Predictors of Invasion by Woody Species in a Temperate Region. Conservation Biology 20: 1487–1498. https://doi.org/10.1111/j.1523-1739.2006.00477.x
Krumm F, Vítková L (2016) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, 423 pp. http://www.in-tree.org/uploads/images/book/Introduced_tree_species_EN_HighRes.pdf
Kutlvašr J, Pergl J, Baroš A, Pyšek P (2019) Survival, dynamics of spread and invasive potential of species in perennial plantations. Biological Invasions 21: 561–573. https://doi.org/10.1007/s10530-018-1847-4
Lamarque LJ, Delzon S, Christopher JL (2011) Tree invasions: a comparative test of the dominant hypotheses and functional traits. Biological Invasions 13: 1969–1989. https://doi.org/10.1007/s10530-011-0015-x
Lecomte H (2017) La forêt wallonne en quelques chiffres. In: Blerot P, Heyninck C (Eds) Le Grand Livre de la Forêt. Forêt Wallonne asbl, 37–13.
Lhoir P, Scholzen E (2017) Création et évolution des arboretums. In: Blerot P, Heyninck C (Eds) Le Grand Livre de la Forêt. Forêt Wallonne asbl, 334–335.
Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Diversity and Distributions 15: 904–910. https://doi.org/10.1111/j.1472-4642.2009.00594.x
Mack RN (2005) Predicting the Identity of Plant Invaders: Future Contributions from Horticulture. HortScience 40: 1168–1174. https://doi.org/10.21273/HORTSCI.40.5.1168
Martin PH, Marks PL (2006) Intact forests provide only weak resistance to a shade-tolerant invasive Norway maple (Acer platanoides L.). Journal of Ecology 94: 1070–1079. https://doi.org/10.1111/j.1365-2745.2006.01159.x
Meloni F, Motta R, Branquart E, Sitzia T, Vacchiano G (2016) Silvicultural strategies for introduced tree species in Northern Italy. In: Krumm F, Vítková L (Eds) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, 170–184. http://www.in-tree.org/uploads/images/book/Introduced_tree_species_EN_HighRes.pdf [May 5, 2020]
Monty A, Brown CS, Johnston DB (2013) Fire promotes downy brome (Bromus tectorum L.) seed dispersal. Biological Invasions 15: 1113–1123. https://doi.org/10.1007/s10530-012-0355-1
Nygaard PH, Øyen B-H (2017) Spread of the Introduced Sitka Spruce (Picea sitchensis) in Coastal Norway. Forests 8(1): 1–24. https://doi.org/10.3390/f8010024
Nyssen B, Schmidt UE, Muys B, van der Lei PB, Pyttel P (2016) The history of introduced tree species in Europe in a nutshell. In: Krumm F, Vítková L (Eds) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, 44–55.
Orellana IA, Raffaele E (2010) The spread of the exotic conifer Pseudotsuga menziesii in Austrocedrus chilensis forests and shrublands in northwestern Patagonia, Argentina. New Zealand Journal of Forestry Science 40: 199–209. www.scionresearch.com/nzjfs [July 3, 2019]
Oyen B-H (2001) Vestamerikansk hemlokk: Gjokungen blant innforte bartraer i Vest-Norge? [Western Hemlock: An invasive introduced conifer in Western Norway.]. Blyttia 59: 208–216.
Petit S, Cordier S, Claessens H, Ponette Q, Vincke C, Marchal D, Weissen F (2017) Fichier écologique des essences. Forêt.Nature, UCLouvain-ELIe, ULiège-GxABT, SPWARNE-DNF. https://www.fichierecologique.be [May 6, 2020]
Pyšek P, Richardson DM (2012) Invasive Species. In: The Berkshire Encyclopedia of Sustainability: Ecosystem Management and Sustainability. Berkshire Publishing Group, Great Barrington, 211–219. http://www.ibot.cas.cz/personal/pysek/pdf/Pysek,%20Richardson-Invasive%20species_Berkshire%20Encyclopaedia2012.pdf December 12, 2017]
Pyšek P (2016) What determines the invasiveness of tree species in central Europe? In: Krumm F, Vítková L (Eds) Introduced tree species in European forests: opportunities and challenges. European Forest Institute, 68–77.
Pyšek P, Manceur AM, Alba C, Mcgregor KF, Pergl J, Stajerova K, Chytry M, Danihelka J, Kartesz J, Klimešova J, Lucanova M (2015) Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96: 762–774. https://doi.org/10.1890/14-1005.1
Pyšek P, Krivanek M, Jarošík V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90: 2734–2744. https://doi.org/10.1890/08-0857.1
Pyšek P Jarošík V, Pergl J, Moravcová L, Chytrý M, Kühn I (2014) Temperate trees and shrubs as global invaders: the relationship between invasiveness and native distribution depends on biological traits. Biological Invasions 16: 577–589. https://doi.org/10.1007/s10530-013-0600-2
R Core Team (2020) R: A Language and Environment for Statistical Computing. https://www.r-project.org
Rejmánek M (2014) Invasive trees and shrubs: Where do they come from and what we should expect in the future? Biological Invasions 16: 483–498. https://doi.org/10.1007/s10530-013-0603-z
Rejmánek M, Pitcairn MJ (2002) When is eradication of exotic pest plants a realistic goal? In: Veitch CR, Clout MN (Eds) Turning the Tide: The Eradication of Island Invasives. IUCN, Gland, Switzerland and Cambridge, UK, 249–253.
Rejmánek M, Richardson DM (2003) Invasiveness of conifers: extent and possible mechanisms. Acta Horticulturae: 375–380. https://doi.org/10.17660/ActaHortic.2003.615.40
Richardson DM, Rejmánek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Diversity and Distributions 10: 321–331. https://doi.org/10.1111/j.1366-9516.2004.00096.x
Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species – a global review. Diversity and Distributions 17: 788–809. https://doi.org/10.1111/j.1472-4642.2011.00782.x
Richardson DM, Rouget M, Rejmánek M (2004) Using Natural Experiments in the Study of Alien Tree Invasions: Opportunities and Limitations. In: Gordon MS, Bartol SM (Eds) Experimental Approaches to Conservation Biology. Univerity of California Press, Ltd., Los Angeles, 180–201. https://doi.org/10.1525/california/9780520240247.003.0012
Richardson DM, Hui C, Nuñez MA, Pauchard A (2014) Tree invasions: patterns, processes, challenges and opportunities. Biological Invasions 16: 473–481. https://doi.org/10.1007/s10530-013-0606-9
Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x
RMI (Weather Belgium – Royal Meteorological Institute of Belgium. https://www.meteo.be/en/belgium [March 23, 2020]
Rooney TP, McCormick RJ, Solheim SL, Waller DM (2000) Regional variation in recruitment of hemlock seedlings and saplings in the upper Great Lakes, USA. Ecological Applications 10: 1119–1132. https://doi.org/10.1890/1051-0761(2000)010[1119:RVIROH]2.0.CO;2
Rouget M, Robertson MP, Wilson JRU, Hui C, Essl F, Renteria JL, Richardson DM (2016) Invasion debt – quantifying future biological invasions. Kühn I (Ed.) Diversity and Distributions 22: 445–456. https://doi.org/10.1111/ddi.12408
Scholzen E, Lhoir P (2018) Inventaire et proposition de valorisation des arboretums publics de Région wallonne. Earth and Life Institute, UCLouvain.
Service Public de Wallonie (2019) Carte des Sols de la Belgique – Géoportail de la Wallonie. http://geoportail.wallonie.be/catalogue/bd0ae685-6c94-4e8e-8ac3-c8efc57fb666.html [December 12, 2019]
Wangen S, Webster CR (2006) Potential for multiple lag phases during biotic invasions: reconstructing an invasion of the exotic tree Acer platanoides. Journal of Applied Ecology 43: 258–268. https://doi.org/10.1111/j.1365-2664.2006.01138.x
van Wilgen BW, Richardson DM (2014) Challenges and trade-offs in the management of invasive alien trees. Biological Invasions 16: 721–734. https://doi.org/10.1007/s10530-013-0615-8
Wilson JRU, Caplat P, Dickie IA, Hui C, Maxwell BD, Nuñez MA, Pauchard A, Rejmánek M, Richardson DM, Robertson MP, Spear D, Webber BL, Van Wilgen BW, Zenni RD (2014) A standardized set of metrics to assess and monitor tree invasions. Biological Invasions 16: 535–551. https://doi.org/10.1007/s10530-013-0605-x
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.