Lange, B.; HYdrISE (Hydrogeochemistry Interactions Soil Environment) unit, UP.2012.10.102, Institut Polytechnique LaSalle Beauvais (ISAB-IGAL), 19 rue Pierre Waguet, FR-60026 Beauvais, France, Laboratory of Plant Ecology and Biogeochemistry, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1150 Brussels, Belgium
Faucon, M.-P.; HYdrISE (Hydrogeochemistry Interactions Soil Environment) unit, UP.2012.10.102, Institut Polytechnique LaSalle Beauvais (ISAB-IGAL), 19 rue Pierre Waguet, FR-60026 Beauvais, France
Meerts, P.; Laboratory of Plant Ecology and Biogeochemistry, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1150 Brussels, Belgium
Shutcha, M.; Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Congo
Mahy, Grégory ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Pourret, O.; HYdrISE (Hydrogeochemistry Interactions Soil Environment) unit, UP.2012.10.102, Institut Polytechnique LaSalle Beauvais (ISAB-IGAL), 19 rue Pierre Waguet, FR-60026 Beauvais, France
Language :
English
Title :
Prediction of the edaphic factors influence upon the copper and cobalt accumulation in two metallophytes using copper and cobalt speciation in soils
Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122: 121-142.
Alford ER, Pilon-Smits EA, Paschke MW (2010) Metallophytes-a view from the rhizosphere. Plant Soil 321(1-2): 33-50.
Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic and Professional, London, p 368.
Avula B, Wan YH, Smillie TJ, Duzgoren-Aydin N, Khan TJ (2010) Quantitative determination of multiple elements in botanicals and dietary supplements using ICP-MS. J Agric Food Chem 58: 8887-8894.
Baker AJM (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3: 643-654.
Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53: 306-316.
Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152: 9-27.
Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc Roy Soc Lond 200: 217-224.
Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum linaeus (Cruciferae). Proc Roy Soc Lond 203: 387-403.
Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environ Pollut 102: 151-161.
Chaignon V, Hinsinger P (2003) A biotest for evaluating copper bioavailability to plants in a contaminated soil. J Environ Qual 32: 824-833.
Chaignon V, Bedin F, Hinsinger P (2002) Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and calcareous soil. Plant Soil 243: 219-228.
Childs CW (1975) Composition of iron-manganese concretions from some New Zealand soils. Geoderma 13: 141-152.
Chipeng FK, Hermans C, Colinet G, Faucon MP, NgongoLuhembwe M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P. A. Duvign. & Plancke. Plant Soil 328: 235-244.
Collins RN, Kinsela AS (2010) The aqueous phase speciation and chemistry of cobalt in terrestrial environments. Chemosphere 79: 763-771.
Collins RN, Kinsela AS (2011) Pedogenic factors and measurements of the plant uptake of cobalt. Plant Soil 339: 499-512.
Dechamps C, Lefèbvre C, Noret N, Meerts P (2007) Reaction norms of life history traits in response to zinc in Thlaspi caerulescens from metalliferous and non metalliferous sites. New Phytol 173: 191-198.
Duvigneaud P (1958) The vegetation of Katanga and its metalliferous soils. Bull Soc Roy Bot Belg 90: 127-286.
Duvigneaud P (1959) Plantes cobaltophytes dans le Haut Katanga. Bull Soc Roy Bot Belg 91: 111-134.
Duvigneaud P, Denaeyer- De Smet S (1963) Cuivre et vegetation au Katanga. Bull Soc Roy Bot Belg 96: 92-231.
Ernst W (1974) Schwermetalvegetation der Erde. G. Fisher Verlag, Stuttgart.
Ernst W (1990) Mine vegetation in Europe. In: Shaw JA (ed) Heavy metal tolerance in plants: evolutionary aspects vol 18. CRC, New York, pp 21-38.
Escarre J, Lefebvre C, Frerot H, Mahieu S, Noret N (2013) Metal concentration and metal mass of metallicolous, non metallicolous and serpentine Noccaea caerulescens populations, cultivated in different growth media. Plant Soil 370: 197-221.
Fageria NK, Wright RJ, Baligar VC, Sousa CMR (1991) Characterization of physical and chemical properties of varzea soils of Goias State of Brazil. Commun Soil Sci Plant Anal 22: 1631-1646.
Faucon MP, Shutcha M, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301: 29-36.
Faucon MP, Colinet G, Mahy G, NgongoLuhembwe M, Verbruggen N, Meerts P (2009) Soil influence on Cu and Co uptake and plant size in the cuprophytes Crepidorhopalon perennis and C. tenuis (Scrophulariaceae) in SC Africa. Plant Soil 317: 201-212.
Faucon MP, Meersseman A, Shutcha MN, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143: 5-18.
Faucon MP, Colinet G, Jitaru P, Verbruggen N, Shutcha M, Mahy G, Meerts P, Pourret O (2011) Relation between cobalt fractionation and its accumulation in Metallophytes from South Central Africa. Mineral Mag 75: 832.
Faucon MP, Chipeng F, Verbruggen N, Mahy G, Collinet G, Shutcha M, Pourret O, Meerts P (2012a) Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environ Exp Bot 84: 11-16.
Faucon MP, Tshilong BM, Rossum F, Meerts P, Decocq G, Mahy G (2012b) Ecology and hybridization potential of two sympatric metallophytes, the narrow endemic Crepidorhopalon perennis (Linderniaceae) and its more widespread congener C. tenuis. Biotropica 44: 454-462.
Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37: 851-866.
Frerot H, Faucon MP, Willems G, Godé C, Courseaux A, Darracq A, Verbruggen N, Saumitou-Laprade P (2010) Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL × environment interactions. New Phytol 187: 355-367.
Gills TE (1995) Standard reference material 1537a-tomatoe leaves-certificate of analysis. National Institute of Standards and Technology, p 5.
Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14: 252-259.
Harter RD, Naidu R (2001) An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci Soc Am J 65: 597-612.
Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237: 173-195.
Hinsinger P, Courchesne F (2008) Biogeochemistry of metals and metalloids at the soil-root interface. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environment. Wiley, Chichester, pp 268-312.
Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248: 43-59.
Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168: 293-303.
Houben D, Sonnet P (2012) Zinc mineral weathering as affected by plant roots. Appl Geochem 27: 1587-1592.
Ilunga wa Ilunga E, Seleck M, Colinet G, Faucon MP, Meerts P, Mahy G (2013) Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in Upper Katanga, DR Congo. Plant Ecol Evol 146: 173-182.
Kabagale AC, Cornu B, van Vliet F, Meyer CL, Mergeay M, LumbuSimbi JB, Droogmans L, Vander Wauven C, Verbruggen N (2010) Diversity of endophytic bacteria from the cuprophytes Haumaniastrum katangense and Crepidorhopalon tenuis. Plant Soil 334: 461-474.
Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, p 403.
Knight B, Zaho FJ, McGrath SP, Shen ZG (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197: 71-78.
Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61: 517-534.
Krishnamurti GSR, Naidu R (2002) Solid-solution speciation and phytoavailability of copper and zinc in soils. Environ Sci Technol 36: 2645-2651.
Küpper H, Götz B, Mijovilovich A, Küpper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants: I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151: 702-714.
Lavilla I, Filgueiras AV, Bendicho C (1999) Comparison of digestion methods for determination of trace and minor metals in plant samples. J Agric Food Chem 47: 5072-5077.
Li Z, McLaren RG, Metherell AK (2004) The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. New Zeal J Agric Res 47: 33-43.
Lofts S, Tipping E (1998) An assemblage model for cation binding by natural particulate matter. Geochim Cosmochim Acta 62: 2609-2625.
Luo D, Zheng H, Chen Y, Wang G, Fenghua D (2010) Transfer characteristics of cobalt from soil to crops in the suburban areas of Fujian Province, southeast China. J Environ Manag 91: 2248-2253.
Macnair MR (2003) The hyperaccumulation of metal by plants. Adv Bot Res 40: 63-105.
Marschner H (1995) Mineral nutrition of higher plants. Academic Press International, San Diego.
McLaren RG, Crawford DV (1973) Studies on soil copper. I. The fractionation of copper in soils. J Soil Sci 24: 172-181.
McLaren RG, Lawson DM, Swift RS (1987) The availability to pasture plants of native and applied soil cobalt in relation to extractable soil cobalt and other soil properties. J Sci Food Agric 39: 101-112.
Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) Copper and cobalt uptake by metallophytes from Zaïre. Plant Soil 53: 535-539.
Morrison RS, Brooks RR, Reeves RD, Malaisse F, Horowitz P, Aronson M, Merriam GR (1981) The diverse chemical forms of heavy metals in tissue extracts of some metallophytes from Shaba Province, Zaïre. Phytochemistry 20: 455-458.
Nolan AL, Lombi E, McLaughlin MJ (2003) Metal bioaccumulation and toxicity in soils-why bother with speciation? Aust J Chem 56: 77-91.
Pollard AJ, Powell KD, Harperf A, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Plant Sci 21: 539-566.
Poschenreider C, Bech J, Llugany M, Pace A, Fenes E, Barcelo J (2001) Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremédiation. Plant Soil 230: 247-256.
Pourret O, Dia A, Davranche M, Gruau G, Henin O, Angee M (2007) Organo-colloidal control on major- and trace-element partitioning in shallow groundwaters: confronting ultrafiltration and modeling. Appl Geochem 22: 1568-1582.
Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180: 169-181.
Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. NATO science series: IV: earth and environmental sciences vol 68. Springer, New York, pp 193-221.
Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Wiley, New York, pp 193-221.
Saad L, Parmentier I, Colinet G, Malaisse F, Faucon MP, Meerts P, Mahy G (2012) Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (DR Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20: 405-415.
Séleck M, Bizoux JP, Colinet G, Faucon MP, Guillaume A, Meerts P, Piqueray J, Mahy G (2013) Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil 373: 455-469.
Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York, p 1022.
Tipping E (1994) WHAM - a chemical equilibrium model and computer code for waters, sediments and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput Geosci 20: 973-1023.
Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4: 3-48.
Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of Mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut 164: 155-172.
Tongtavee N, Shiowatana J, McLaren RG, Buanuam J (2005) Evaluation of distribution and chemical associations between cobalt and manganese in soils by continuous-flow sequential extraction. Commun Soil Sci Plan 36: 2839-2855.
van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362: 319-334.
Villafort Carvalho M, Amaral DC, Guilheme LRG, Aarts MGM (2013) Gomphrena claussenii, the first South American matallophyte species with indicator-like Zn and Cd accumulation and extreme metal tolerance. Front Plant Sci 4: 10. doi: 10. 3389/fpls. 2013. 00180.
Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321: 385-408.
Whitehead DC (2000) Nutrient elements in grassland. Soil-plant-animal relationships. CAB International, Wallingford, 369 pp.