C2CD4A/B; Follicle-stimulating hormone; Genome-wide association studies; Glucose homeostasis; Type 2 diabetes
Résumé :
[en] AIMS/HYPOTHESIS: Variants close to the VPS13C/C2CD4A/C2CD4B locus are associated with altered risk of type 2 diabetes in genome-wide association studies. While previous functional work has suggested roles for VPS13C and C2CD4A in disease development, none has explored the role of C2CD4B. METHODS: CRISPR/Cas9-induced global C2cd4b-knockout mice and zebrafish larvae with c2cd4a deletion were used to study the role of this gene in glucose homeostasis. C2 calcium dependent domain containing protein (C2CD)4A and C2CD4B constructs tagged with FLAG or green fluorescent protein were generated to investigate subcellular dynamics using confocal or near-field microscopy and to identify interacting partners by mass spectrometry. RESULTS: Systemic inactivation of C2cd4b in mice led to marked, but highly sexually dimorphic changes in body weight and glucose homeostasis. Female C2cd4b mice displayed unchanged body weight compared with control littermates, but abnormal glucose tolerance (AUC, p = 0.01) and defective in vivo, but not in vitro, insulin secretion (p = 0.02). This was associated with a marked decrease in follicle-stimulating hormone levels as compared with wild-type (WT) littermates (p = 0.003). In sharp contrast, male C2cd4b null mice displayed essentially normal glucose tolerance but an increase in body weight (p < 0.001) and fasting blood glucose (p = 0.003) after maintenance on a high-fat and -sucrose diet vs WT littermates. No metabolic disturbances were observed after global inactivation of C2cd4a in mice, or in pancreatic beta cell function at larval stages in C2cd4a null zebrafish. Fasting blood glucose levels were also unaltered in adult C2cd4a-null fish. C2CD4B and C2CD4A were partially localised to the plasma membrane, with the latter under the control of intracellular Ca(2+). Binding partners for both included secretory-granule-localised PTPRN2/phogrin. CONCLUSIONS/INTERPRETATION: Our studies suggest that C2cd4b may act centrally in the pituitary to influence sex-dependent circuits that control pancreatic beta cell function and glucose tolerance in rodents. However, the absence of sexual dimorphism in the impact of diabetes risk variants argues for additional roles for C2CD4A or VPS13C in the control of glucose homeostasis in humans. DATA AVAILABILITY: The datasets generated and/or analysed during the current study are available in the Biorxiv repository ( www.biorxiv.org/content/10.1101/2020.05.18.099200v1 ). RNA-Seq (GSE152576) and proteomics (PXD021597) data have been deposited to GEO ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152576 ) and ProteomeXchange ( www.ebi.ac.uk/pride/archive/projects/PXD021597 ) repositories, respectively.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
Mousavy Gharavy, S. Neda
Owen, Bryn M.
Millership, Steven J.
Chabosseau, Pauline
Pizza, Grazia
Martinez-Sanchez, Aida
Tasoez, Emirhan
Georgiadou, Eleni
Hu, Ming
Fine, Nicholas H. F.
Jacobson, David A.
Dickerson, Matthew T.
Idevall-Hagren, Olof
Montoya, Alex
Kramer, Holger
Mehta, Zenobia
Withers, Dominic J.
Ninov, Nikolay
Gadue, Paul J.
Cardenas-Diaz, Fabian L.
Cruciani-Guglielmacci, Céline
Magnan, Christophe
Ibberson, Mark
Leclerc, Isabelle
Voz, Marianne ; Université de Liège - ULiège > GIGA Stem Cells - Zebrafish Dev. & Disease Model
Mahajan A, Taliun D, Thurner M et al (2018) Fine-mapping of an expanded set of type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet:245506. 10.1101/245506
Prokopenko I, McCarthy MI, Lindgren CM (2008) Type 2 diabetes: new genes, new understanding. Trends Genet 24(12):613–621. 10.1016/j.tig.2008.09.004 DOI: 10.1016/j.tig.2008.09.004
Carrat GR, Hu M, Nguyen-Tu M-S et al (2017) Decreased STARD10 Expression Is Associated with Defective Insulin Secretion in Humans and Mice. Am J Hum Genet 100(2):238–256. 10.1016/j.ajhg.2017.01.011 DOI: 10.1016/j.ajhg.2017.01.011
Rutter GA, Chimienti F (2015) SLC30A8 mutations in type 2 diabetes. Diabetologia 58(1):31–36. 10.1007/s00125-014-3405-7 DOI: 10.1007/s00125-014-3405-7
Prokopenko I, Poon W, Mägi R et al (2014) A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genet 10(4):1–13. 10.1371/journal.pgen.1004235 DOI: 10.1371/journal.pgen.1004235
Kumar N, Leonzino M, Hancock-Cerutti W et al (2018) VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217(10):3625–3639. 10.1083/jcb.201807019 DOI: 10.1083/jcb.201807019
Mehta ZB, Fine N, Pullen TJ et al (2016) Changes in the expression of the type 2 diabetes-associated gene VPS13C in the β-cell are associated with glucose intolerance in humans and mice. Am J Physiol Endocrinol Metab 311(2):E488–E507. 10.1152/ajpendo.00074.2016 DOI: 10.1152/ajpendo.00074.2016
Varshney A, Scott LJ, Welch RP et al (2017) Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci 114(9):2301–2306. 10.1073/pnas.1621192114 DOI: 10.1073/pnas.1621192114
Kycia I, Wolford BN, Huyghe JR et al (2018) A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolutionarily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression. Am J Hum Genet 102(4):620–635. 10.1016/j.ajhg.2018.02.020 DOI: 10.1016/j.ajhg.2018.02.020
Warton K, Foster NC, Gold WA, Stanley KK (2004) A novel gene family induced by acute inflammation in endothelial cells. Gene 342(1):85–95. 10.1016/j.gene.2004.07.027 DOI: 10.1016/j.gene.2004.07.027
Omori H, Ogaki S, Sakano D et al (2016) Changes in expression of C2cd4c in pancreatic endocrine cells during pancreatic development. FEBS Lett 590:2584–2593. 10.1002/1873-3468.12271 DOI: 10.1002/1873-3468.12271
Gilon P, Chae H-Y, Rutter GA, Ravier MA (2014) Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium 56(5):340–361. 10.1016/j.ceca.2014.09.001 DOI: 10.1016/j.ceca.2014.09.001
O’Hare EA, Yerges-Armstrong LM, Perry JA, Shuldiner AR, Zaghloul NA (2016) Assignment of functional relevance to genes at type 2 diabetes-associated loci through investigation of β-Cell mass deficits. Mol Endocrinol 30(4):429–445. 10.1210/me.2015-1243 DOI: 10.1210/me.2015-1243
Peiris H, Park S, Louis S et al (2018) Discovering human diabetes-risk gene function with genetics and physiological assays. Nat Commun 9(1):3855. 10.1038/s41467-018-06249-3 DOI: 10.1038/s41467-018-06249-3
Kuo T, Kraakman MJ, Damle M, Gill R, Lazar MA, Accili D (2019) Identification of C2CD4A as a human diabetes susceptibility gene with a role in β cell insulin secretion. Proc Natl Acad Sci U S A 116(4):20033–20042. 10.1073/pnas.1904311116 DOI: 10.1073/pnas.1904311116
Pullen TJ, Huising MO, Rutter GA (2017) Analysis of purified pancreatic islet beta and alpha cell transcriptomes reveals 11β-hydroxysteroid dehydrogenase (Hsd11b1) as a novel disallowed gene. Front Genet 8:41. 10.3389/fgene.2017.00041 DOI: 10.3389/fgene.2017.00041
Brouwers B, De Faudeur G, Osipovich AB et al (2014) Impaired islet function in commonly used transgenic mouse lines due to human growth hormone minigene expression. Cell Metab 20(6):979–990. 10.1016/j.cmet.2014.11.004 DOI: 10.1016/j.cmet.2014.11.004
Owen BM, Bookout AL, Ding X et al (2013) FGF21 contributes to neuroendocrine control of female reproduction. Nat Med 19(9):1153–1156. 10.1038/nm.3250 DOI: 10.1038/nm.3250
Ravier MA, Rutter GA (2010) Isolation and culture of mouse pancreatic islets for ex vivo imaging studies with trappable or recombinant fluorescent probes. In: Ward A, Tosh D (eds) Mouse cell culture: methods and protocols. Humana Press, Totowa, pp 171–184 DOI: 10.1007/978-1-59745-019-5_12
Nguyen-Tu M-S, da Silva Xavier G, Leclerc I, Rutter GA (2018) Transcription factor-7-like 2 (TCF7L2) gene acts downstream of the Lkb1/Stk11 kinase to control mTOR signaling, β cell growth, and insulin secretion. J Biol Chem 293(36):14178–14189. 10.1074/jbc.RA118.003613 DOI: 10.1074/jbc.RA118.003613
Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49(3):424–430. 10.2337/diabetes.49.3.424 DOI: 10.2337/diabetes.49.3.424
Westerfield M (1995) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 3rd edition. Univ Oregon Press, Eugene
Fisher S, Grice EA, Vinton RM et al (2006) Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat Protoc 1(3):1297–1305. 10.1038/nprot.2006.230 DOI: 10.1038/nprot.2006.230
Fisher S, Grice EA, Vinton RM, Bessling SL, McCallion AS (2006) Conservation of RET regulatory function from human to zebrafish without sequence similarity. Science 312(5771):276–279. 10.1126/science.1124070 DOI: 10.1126/science.1124070
Mavropoulos A, Devos N, Biemar F et al (2005) sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev Biol 285(1):211–223. 10.1016/j.ydbio.2005.06.024 DOI: 10.1016/j.ydbio.2005.06.024
Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3(1):59–69. 10.1038/nprot.2007.514 DOI: 10.1038/nprot.2007.514
Flasse LC, Pirson JL, Stern DG et al (2013) Ascl1b and Neurod1, instead of Neurog3, control pancreatic endocrine cell fate in zebrafish. BMC Biol 11(1):78. 10.1186/1741-7007-11-78 DOI: 10.1186/1741-7007-11-78
Salem V, Silva LD, Suba K et al (2019) Leader β-cells coordinate Ca2+ dynamics across pancreatic islets in vivo. Nat Metab 1(6):615–629. 10.1038/s42255-019-0075-2 DOI: 10.1038/s42255-019-0075-2
Hodson DJ, Mitchell RK, Bellomo EA et al (2013) Lipotoxicity disrupts incretin-regulated human β cell connectivity. J Clin Invest 123(10):4182–4194. 10.1172/JCI68459 DOI: 10.1172/JCI68459
Ravassard P, Hazhouz Y, Pechberty S et al (2011) A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J Clin Invest 121(9):3589–3597. 10.1172/JCI58447DS1 DOI: 10.1172/JCI58447DS1
Miyazaki J-I, Araki K, Yamato E et al (1990) Establishment of a pancreatic β cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology 127(1):126–132. 10.1210/endo-127-1-126 DOI: 10.1210/endo-127-1-126
Millership SJ, Da Silva Xavier G, Choudhury AI et al (2018) Neuronatin regulates pancreatic β cell insulin content and secretion. J Clin Invest 128(8):3369–3381. 10.1172/JCI120115 DOI: 10.1172/JCI120115
Benner C, van der Meulen T, Cacéres E, Tigyi K, Donaldson CJ, Huising MO (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15(1):620. 10.1186/1471-2164-15-620 DOI: 10.1186/1471-2164-15-620
Kone M, Pullen TJ, Sun G et al (2014) LKB1 and AMPK differentially regulate pancreatic β-cell identity. FASEB J 28(11):4972–4985. 10.1096/fj.14-257667 DOI: 10.1096/fj.14-257667
Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One 5(7):e11499. 10.1371/journal.pone.0011499 DOI: 10.1371/journal.pone.0011499
Blodgett DM, Nowosielska A, Afik S et al (2015) Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64(9):3172–3181. 10.2337/db15-0039 DOI: 10.2337/db15-0039
Cruciani-Guglielmacci C, Bellini L, Denom J et al (2017) Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion. Mol Metab 6(4):340–351. 10.1016/j.molmet.2017.01.009 DOI: 10.1016/j.molmet.2017.01.009
Solimena M, Schulte AM, Marselli L et al (2018) Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61(3):641–657. 10.1007/s00125-017-4500-3 DOI: 10.1007/s00125-017-4500-3
Miguel-Escalada I, Bonàs-Guarch S, Cebola I et al (2019) Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nat Genet 51(7):1137–1148. 10.1038/s41588-019-0457-0 DOI: 10.1038/s41588-019-0457-0
Idevall-hagren O, Lü A, Xie B, De Camilli P (2015) Triggered Ca 2 + influx is required for extended membrane tethering. EMBO J 34(17):2291–2305 DOI: 10.15252/embj.201591565
Shichiri M, Ishimaru S, Ota T, Nishikawa T, Isogai T, Hirata Y (2003) Salusins: newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat Med 9(9):1166–1172. 10.1038/nm913 DOI: 10.1038/nm913
Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21(10):599–609. 10.1016/j.tem.2010.06.003 DOI: 10.1016/j.tem.2010.06.003
Grarup N, Overvad M, Sparsø T et al (2011) The diabetogenic VPS13C/C2CD4A/C2CD4B rs7172432 variant impairs glucose-stimulated insulin response in 5,722 non-diabetic Danish individuals. Diabetologia 54(4):789–794. 10.1007/s00125-010-2031-2 DOI: 10.1007/s00125-010-2031-2
Alonso-Magdalena P, Ropero AB, Carrera MP et al (2008) Pancreatic Insulin Content Regulation by the Estrogen Receptor ERα. PLoS One 3(4):e2069 DOI: 10.1371/journal.pone.0002069
Mauvais-Jarvis F, Clegg DJ, Hevener AL (2013) The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocr Rev 34(3):309–338. 10.1210/er.2012-1055 DOI: 10.1210/er.2012-1055
Saito T, Ciobotaru A, Bopassa JC, Toro L, Stefani E, Eghbali M (2009) Estrogen contributes to gender differences in mouse ventricular repolarization. Circ Res 105(4):343–352. 10.1161/CIRCRESAHA.108.190041 DOI: 10.1161/CIRCRESAHA.108.190041
Mauvais-Jarvis F (2017) Epidemiology of gender differences in diabetes and obesity. In: Mauvais-Jarvis F (ed) Sex and gender factors affecting metabolic homeostasis, diabetes and obesity. Springer International Publishing, Cham, pp 3–8 DOI: 10.1007/978-3-319-70178-3_1
Strawbridge RJ, Dupuis J, Prokopenko I et al (2011) Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60(10):2624–2634. 10.2337/db11-0415 DOI: 10.2337/db11-0415
Mahajan A, Wessel J, Willems SM et al (2018) Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes article. Nat Genet 50(4):559–571. 10.1038/s41588-018-0084-1 DOI: 10.1038/s41588-018-0084-1
Ingvorsen C, Karp NA, Lelliott CJ (2017) The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice. Nutr Diabetes 7(4):e261–e267. 10.1038/nutd.2017.6 DOI: 10.1038/nutd.2017.6
Corbalán-García S, Gómez-Fernández JC (2010) The C2 domains of classical and novel PKCs as versatile decoders of membrane signals. BioFactors 36(1):1–7. 10.1002/biof.68 DOI: 10.1002/biof.68
Nalefski EA, Falke JJ (1996) The C2 domain calcium-binding motif: Structural and functional diversity. Protein Sci 5(12):2375–2390. 10.1002/pro.5560051201 DOI: 10.1002/pro.5560051201
Pouli EA, Karajenc N, Wasmeier C et al (1998) A phogrin–aequorin chimaera to image free Ca2+ in the vicinity of secretory granules. Biochem J 330(3):1399–1404. 10.1042/bj3301399 DOI: 10.1042/bj3301399
Kubosaki A, Nakamura S, Clark A, Morris JF, Notkins AL (2006) Disruption of the transmembrane dense core vesicle proteins IA-2 and IA-2β causes female infertility. Endocrinology 147(2):811–815. 10.1210/en.2005-0638 DOI: 10.1210/en.2005-0638
Saeki K, Zhu M, Kubosaki A, Xie J, Lan MS, Notkins AL (2002) Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes 51(6):1842–1850. 10.2337/diabetes.51.6.1842 DOI: 10.2337/diabetes.51.6.1842
Fontaine DA, Davis DB (2016) Attention to Background Strain Is Essential for Metabolic Research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 65(1):25–33. 10.2337/db15-0982 DOI: 10.2337/db15-0982
Wang S, Li Y, Ma C (2016) Synaptotgmin-1 C2B domain interacts simultaneousy with SNAREs and membranes to promote membrane fusion. ELife 5:e14211. 10.7554/eLife.14211 DOI: 10.7554/eLife.14211