[en] Landslides have been considered widely as principal mass wasting agents in the valleys experiencing varied influence of tectonics and climate. However, pattern of landslides is rarely addressed in the literature that may act as a surface manifestation of interrelationship of tectonics, climate, and lithology. Here, we have attempted to understand such interrelationship in the context of landslide distribution pattern in the Satluj valley, Northwest Himalaya. Geomorphic indices such as steepness index, valley floor width to valley height ratio, and topographic swath profile were used for tectonic inference. Daily rainfall data of the year 2000–2016, using 5 rain‐gauge stations and swath profile of Normalized Difference Vegetation Index, were used to deduce spatial variability of climate. Influence of lithological variability and regional faults; Sangla Detachment, Main Central Thrust, and Munsiari Thrust on the landslide distribution are also inferred. A total of 55 landslides (20 rock avalanche, 19 debris slides, and 16 rockfalls) are found to exist in 6 clusters along 130 km stretch of the Satluj valley. These landslides, covering a total area (A) and volume (V) of 1.05 × 10⁷ m² and 4.4 × 10⁷ m³, respectively, are also noted to follow a power law (R² = 0.8) and result in a scaling relationship of V = (0.180)A1.208.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Kumar, Vipin ; Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Gupta, Vikram
Sundriyal, Y. P.
Language :
English
Title :
Spatial interrelationship of landslides, litho-tectonic and climate regime, Satluj valley, Northwest Himalaya
Abele, G. (1974). Bergsturze in den Alpen. Ihre Verbreitung, Morphologie und Folgeerscheinungen. Wiss. Alpenvereinshefte, 25, 230. (In German)
Ballantyne, C. K. (2002). Paraglacial geomorphology. Quaternary Science Reviews, 21(18), 1935–2017.
Berthelsen, A. (1951). A geological section through the Himalaya. Meddelelser Dansk Geologisk Forening (Danish); Announcement of Geological Society of Denmark (English), 12, 102–104.
Bin, H., Chen, A., Jiang, W., & Chen, Z. (2017). The response of vegetation growth to shifts in trend of temperature in China. Journal of Geographical Sciences, 27(7), 801–816.
Blöthe, J. H., Korup, O., & Schwanghart, W. (2015). Large landslides lie low: Excess topography in the Himalaya-Karakoram ranges. Geology, 43(6), 523–526.
Borgatti, L., & Soldati, M. (2010). Landslides as a geomorphological proxy for climate change: A record from the Dolomites (northern Italy). Geomorphology, 120(1), 56–64.
Bull, W. B. (2009). Tectonically active landscapes (1st Edn.). West Sussex, UK: John Wiley and Sons.
Bull, W. B., & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock fault, California. In Geomorphology in arid regions. Proceedings of the eighth annual geomorphology symposium (pp. 115–138). Binghamton: State University of New York.
Burbank, D. W. (2002). Rates of erosion and their implications for exhumation. Mineralogical Magazine, 66(1), 25–52.
Burchfiel, B. C., Zhiliang, C., Hodges, K. V., Yuping, L., Royden, L. H., Changrong, D., & Jiene, X. (1992). The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Papers, 269, 1–41.
Cascini, L., Ciurleo, M., Di Nocera, S., & Gullà, G. (2015). A new–old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy. Geomorphology, 241, 371–381.
Chawla, A., Kumar, A., Lal, B., Singh, R. D., & Thukral, A. K. (2012). Ecological characterization of high altitude Himalayan landscapes in the Upper Satluj River Watershed, Kinnaur, Himachal Pradesh, India. Journal of the Indian Society of Remote Sensing, 40(3), 519–539.
Crozier, M. J. (2010). Deciphering the effect of climate change on landslide activity: A review. Geomorphology, 124(3), 260–267.
Deering, D.W. (1978). Rangeland reflectance characteristics measured by aircraft and spacecraft sensors. Ph.D. Dissertation, Texas A & M University, College Station, TX, 338.
DeGraff, J. V. (1989). Landslide activity resulting from the November 1988 storm events in southern Thailand and associated resource recovery needs. In Safeguarding the future. Restoration and development in the South of Thailand (pp. 1–43). Bangkok: Jiramedha Advertising and Printing.
Densmore, A. L., Ellis, M. A., & Anderson, R. S. (1998). Landsliding and the evolution of normal-fault-bounded mountains. Journal of Geophysical Research: Solid Earth, 103(B7), 15203–15219.
Dussauge, C., Grasso, J. R., & Helm Stetter, A. (2003). Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics. Journal of Geophysical Research: Solid Earth, 108(B6).
Fisher, G. B., Amos, C. B., Bookhagen, B., Burbank, D. W., & Godard, V. (2012). Channel widths, landslides, faults, and beyond: The new world order of high-spatial resolution Google Earth imagery in the study of earth surface processes. Geological Society of America Special Papers, 492, 1–22.
Flint, J. J. (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 10(5), 969–973.
Gadgil, S. (2003). The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences, 31(1), 429–467.
Gaillard, J. C., Liamzon, C. C., & Villanueva, J. D. (2007). Natural disaster? A retrospect into the causes of the late-2004 typhoon disaster in Eastern Luzon, Philippines. Environmental Hazards, 7(4), 257–270.
Grohmann, C. H., Riccomini, C., & Chamani, M. A. C. (2011). Regional scale analysis of landform configuration with base-level (isobase) maps. Hydrology and Earth System Sciences, 15(5), 1493–1504.
Gupta, V., Nautiyal, H., Kumar, V., Jamir, I., & Tandon, R. S. (2016). Landslide hazards around Uttarkashi township, Garhwal Himalaya, after the tragic flash flood in June 2013. Natural Hazards, 80(3), 1689–1707.
Gupta, V., & Sah, M. P. (2008a). Spatial variability of mass movements in the Satluj Valley, Himachal Pradesh during 1990–2006. Journal of Mountain Science, 5, 38–51.
Gupta, V., & Sah, M. P. (2008b). Impact of the trans-Himalayan landslide lake outburst flood (LLOF) in the Satluj catchment, Himachal Pradesh, India. Natural Hazards, 45(3), 379–390.
Gupta, V., Sah, M. P., Virdi, N. S., & Bartarya, S. K. (1993). Landslide hazard zonation in the Upper Satluj Valley, District Kinnaur, Himachal Pradesh. Himalayan Geology, 4(1), 81–93.
Guthrie, R. H., & Evans, S. G. (2004). Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Natural Hazards and Earth System Science, 4(3), 475–483.
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., & Valigi, D. (2009). Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3), 222–229.
Guzzetti, F., Cardinali, M., & Reichenbach, P. (1996). The influence of structural setting and lithology on landslide type and pattern. Environmental and Engineering Geoscience, 2(4), 531–555.
Haflidason, H., Lien, R., Sejrup, H. P., Forsberg, C. F., & Bryn, P. (2005). The dating and morphometry of the Storegga Slide. Marine and Petroleum Geology, 22(1), 123–136.
Harvey, J. E., Burbank, D. W., & Bookhagen, B. (2015). Along-strike changes in Himalayan thrust geometry: Topographic and tectonic discontinuities in western Nepal. Lithosphere, 7(5), 511–518.
Hazarika, D., Wadhawan, M., Paul, A., Kumar, N., & Borah, K. (2017). Geometry of the main Himalayan Thrust and Moho beneath Satluj valley, northwest Himalaya: Constraints from receiver function analysis. Journal of Geophysical Research: Solid Earth, 122(4), 2929–2945.
Hovius, N., Stark, C. P., & Allen, P. A. (1997). Sediment flux from a mountain belt derived by landslide mapping. Geology, 25(3), 231–234.
Howard, A. D., & Kerby, G. (1983). Channel changes in badlands. Geological Society of America Bulletin, 94(6), 739–752.
Imaizumi, F., & Sidle, R. C. (2007). Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan. Journal of Geophysical Research: Earth Surface, 112(F3).
Innes, J. L. (1983). Debris flows. Progress in Physical Geography, 7(4), 469–501.
Islam, R., & Gururajan, N. S. (2003). Geochemistry, petrogenesis and tectonic setting of Akpa-Rakcham granites of Sutlej valley, Himachal Pradesh, India. Himalayan Geology, 24, 63–76.
Jackson, R. D., & Huete, A. R. (1991). Interpreting vegetation indices. Preventive Veterinary Medicine, 11(3–4), 185–200.
Joshi, P. K., Singh, S., Agarwal, S., & Roy, P. S. (2001). Forest cover assessment in western Himalayas, Himachal Pradesh using IRS 1C/1D WiFS data. Current Science, 941–947.
Kakkar, R. K. (1988). Geology and tectonic setting of Central Crystalline rocks of southern part of Higher Himachal Himalaya. Geological Society of India, 31(2), 243–250.
Kawagoe, S., Kazama, S., & Sarukkalige, P. R. (2009). Assessment of snowmelt triggered landslide hazard and risk in Japan. Cold Regions Science and Technology, 58(3), 120–129.
Keller, E. A., & Pinter, N. (2002). Active tectonics: Earthquakes, uplift, and landscape (2nd Edn.). Upper Saddle River, New Jersey: Prentice Hall.
Kokutse, N. K., Temgoua, A. G. T., & Kavazović, Z. (2016). Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecological Engineering, 86, 146–153.
Korup, O. (2005). Geomorphic imprint of landslides on alpine river systems, southwest New Zealand. Earth Surface Processes and Landforms, 30(7), 783–800.
Korup, O., Densmore, A. L., & Schlunegger, F. (2010). The role of landslides in mountain range evolution. Geomorphology, 120(1), 77–90.
Lang, A., Moya, J., Corominas, J., Schrott, L., & Dikau, R. (1999). Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology, 30(1), 33–52.
Larsen, I. J., Montgomery, D. R., & Korup, O. (2010). Landslide erosion controlled by hillslope material. Nature Geoscience, 3(4), 247.
Larsen, M. C., & Torres-Sánchez, A. J. (1998). The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology, 24(4), 309–331.
Luirei, K., Bhakuni, S. S., & Kothyari, G. C. (2017). Geomorphologic study of the valley floor in different tectonic segments along Kosi River valley between South Almora Thrust and Himalayan Frontal Thrust: Kumaun Himalaya, India. Geological Journal. https://doi.org/10.1002/gj.2969
Mach, K., & Mastrandrea, M. (2014). In C. B. Field, & V. R. Barros (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability (Vol. 1). Cambridge and New York: Cambridge University Press.
Martin, Y., Rood, K., Schwab, J. W., & Church, M. (2002). Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Canadian Journal of Earth Sciences, 39(2), 189–205.
Mittal, S. K., Singh, M., & Singh, B. (2013). A technical note on monitoring of Jhakri Landslide in Bari village area of Himachal Pradesh. Journal of Rock Mechanics and Tunneling Technology, 19(2), 129–134.
Mohammed, N. Z., Ghazi, A., & Mustafa, H. E. (2013). Positional accuracy testing of Google Earth. International Journal of Multidisciplinary Sciences and Engineering, 4(6), 6–9.
Mukherjee, S. (2015). A review on out-of-sequence deformation in the Himalaya. Geological Society, London, Special Publications, 412(1), 67–109.
Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481–486.
Pilgrim, G. E., & West, W. D. (1928). The structure and correlation of Simla rocks. Memoir Geological Society of India, 53, 1–140.
Rahman, A. A., Boguslawski, P., Anton, F., Said, M. N., & Omar, K. M. (Eds.) (2014). Geoinformation for informed decisions. Switzerland: Springer International Publishing.
Reichenbach, P., Galli, M., Cardinali, M., Guzzetti, F., & Ardizzone, F. (2004). Geomorphological mapping to assess landslide risk: Concepts, methods and applications in the Umbria region of central Italy. Landslide Hazard Risk, 429–468.
Rice, R. M., Crobett, E. S., & Bailey, R. G. (1969). Soil slips related to vegetation, topography, and soil in southern California. Water Resources Research, 5(3), 647–659.
Rosser, N., Lim, M., Petley, D., Dunning, S., & Allison, R. (2007). Patterns of precursory rockfall prior to slope failure. Journal of Geophysical Research: Earth Surface, 112(F4).
Ruiz-Villanueva, V., Allen, S., Arora, M., Goel, N. K., & Stoffel, M. (2017). Recent catastrophic landslide lake outburst floods in the Himalayan mountain range. Progress in Physical Geography, 41(1), 3–28.
Sanchez, G., Rolland, Y., Corsini, M., Braucher, R., Bourlès, D., Arnold, M., & Aumaître, G. (2010). Relationships between tectonics, slope instability and climate change: Cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology, 117, 1), 1–1, 13.
Shao, Y. (2008). Physics and modelling of wind erosion (Vol. 37). Berlin: Springer Science and Business Media.
Sharma, K. K. (1977). A contribution to the geology of Satluj Valley, Kinnaur, Himachal Pradesh, India. Collques Internationaux du CNRS, 268, 369–378.
Sharma, S., Shukla, A. D., Bartarya, S. K., Marh, B. S., & Juyal, N. (2017). The Holocene floods and their affinity to climatic variability in the western Himalaya, India. Geomorphology, 290, 317–334.
Shroder, J. F. (1998). Slope failure and denudation in the western Himalaya. Geomorphology, 26(1), 81–105.
Simonett, D. S. (1967). Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea. Landform studies from Australia and New Guinea, 64–84.
Snyder, N. P., Whipple, K. X., Tucker, G. E., & Merritts, D. J. (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin, 112(8), 1250–1263.
Srikantia, S. V., & Bhargava, O. N. (1998). Geology of Himachal Pradesh. Bangalore, India: Geological Survey of India.
Telbisz, T., Kovács, G., Székely, B., & Szabó, J. (2013). Topographic swath profile analysis: A generalization and sensitivity evaluation of a digital terrain analysis tool. Zeitschrift für Geomorphologie, 57(4), 485–513.
Thiede, R. C., Ehlers, T. A., Bookhagen, B., & Strecker, M. R. (2009). Erosional variability along the northwest Himalaya. Journal of Geophysical Research: Earth Surface, 114(F1).
Vannay, J. C., Grasemann, B., Rahn, M., Frank, W., Carter, A., Baudraz, V., & Cosca, M. (2004). Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: Evidence for tectonic extrusion coupled to fluvial erosion. Tectonics, 23(1), 1–24.
Verma, R. K., & Kapoor, K. S. (2010). Assessment of floristic diversity in Pooh valley of cold deserts of district Kinnaur, Himachal Pradesh. Biological Forum, 2(1), 35–44.
Wang, X., Xie, H., Guan, H., & Zhou, X. (2007). Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions. Journal of Hydrology, 340(1), 12–24.
Wessels, K. J., Van Den Bergh, F., & Scholes, R. J. (2012). Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sensing of Environment, 125, 10–22.
Whitehouse, I. E. (1983). Distribution of large rock avalanche deposits in the central Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics, 26(3), 271–279.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., … Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Geological Society of America Special Papers, 398, 55–74.
Wu, W., & Sidle, R. C. (1995). A distributed slope stability model for steep forested basins. Water Resources Research, 31(8), 2097–2110.
Wulf, H., Bookhagen, B., & Scherler, D. (2012). Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya. Hydrology and Earth System Sciences, 16(7), 2193.
Yang, L., Wylie, B. K., Tieszen, L. L., & Reed, B. C. (1998). An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the US northern and central Great Plains. Remote Sensing of Environment, 65(1), 25–37.