[en] Abstract Understanding the nature of chemical bonding in solids is crucial to comprehend the physical and chemical properties of a given compound. To explore changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O), a combination of property-, bond-breaking-, and quantum-mechanical bonding descriptors are applied. The outcome of the explorations reveals an electron-transfer-driven transition from metavalent bonding in PbX (X = Te, Se, S) to iono-covalent bonding in β-PbO. Metavalent bonding is characterized by adjacent atoms being held together by sharing about a single electron (ES ≈ 1) and small electron transfer (ET). The transition from metavalent to iono-covalent bonding manifests itself in clear changes in these quantum-mechanical descriptors (ES and ET), as well as in property-based descriptors (i.e., Born effective charge (Z*), dielectric function ε(ω), effective coordination number (ECoN), and mode-specific Grüneisen parameter (γTO)), and in bond-breaking descriptors. Metavalent bonding collapses if significant charge localization occurs at the ion cores (ET) and/or in the interatomic region (ES). Predominantly changing the degree of electron transfer opens possibilities to tailor material properties such as the chemical bond (Z*) and electronic (ε∞) polarizability, optical bandgap, and optical interband transitions characterized by ε2(ω). Hence, the insights gained from this study highlight the technological relevance of the concept of metavalent bonding and its potential for materials design.
Disciplines :
Physics
Author, co-author :
Maier, Stefan
Steinberg, Simon
Cheng, Yudong
Schön, Carl-Friedrich
Schumacher, Mathias
Mazzarello, Riccardo
Golub, Pavlo
Nelson, Ryky
Cojocaru-Mirédin, Oana
Raty, Jean-Yves ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Wuttig, Matthias
Language :
English
Title :
Discovering Electron-Transfer-Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where X = Te, Se, S, O)
Publication date :
2020
Journal title :
Advanced Materials
ISSN :
0935-9648
eISSN :
1521-4095
Publisher :
Wiley-Blackwell, United States
Volume :
32
Issue :
49
Pages :
2005533
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
R. Hoffmann, Angew. Chem., Int. Ed. Engl. 1987, 26, 846.
G. J. Miller, Eur. J. Inorg. Chem. 1998, 1998, 523.
K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 2008, 7, 653.
M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Welnic, M. Gilleßen, R. Dronskowski, Nat. Mater. 2007, 6, 122.
D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 2008, 7, 972.
V. L. Deringer, W. Zhang, M. Lumeij, S. Maintz, M. Wuttig, R. Mazzarello, R. Dronskowski, Angew. Chem., Int. Ed. 2014, 53, 10817.
V. L. Deringer, R. Dronskowski, M. Wuttig, Adv. Funct. Mater. 2015, 25, 6343.
Y. Yu, M. Cagnoni, O. Cojocaru-Miredin, M. Wuttig, Adv. Funct. Mater. 2019, 30, 1904862.
W. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, G. J. Snyder, Angew. Chem., Int. Ed. 2016, 55, 6826.
L. Pauling, The Nature of the Chemical Bond, Cornell University Press, New York 1960.
C. Coulson, Coulson's Valence, Oxford University Press, Oxford, UK 1979.
L. Pauling, Nature 1980, 284, 685.
M. Springborg, Y. Dong, in Handbook of Solid State Chemistry (Eds: R. Dronskowski, S. Kikkawa, A. Stein), Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany 2017.
K. Schwarz, P. Blaha, in Hanbook of Solid State Chemistry (Eds: R. Dronskowski, S. Kikkawa, A. Stein), Wiley-VCH GmbH & Co KGaA, Weinheim, Germany 2017.
A. Moewes, in Handbook of Solid State Chemistry (Eds: R. Dronskowski, S. Kikkawa, A. Stein), Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany 2017.
M. Wuttig, V. L. Deringer, X. Gonze, C. Bichara, J.-Y. Raty, Adv. Mater. 2018, 30, 1803777.
J.-Y. Raty, M. Schumacher, P. Golub, V. L. Deringer, C. Gatti, M. Wuttig, Adv. Mater. 2019, 31, 1806280.
M. Zhu, O. Cojocaru-Miredin, A. M. Mio, J. Keutgen, M. Kupers, Y. Yu, J. Y. Cho, R. Dronskowski, M. Wuttig, Adv. Mater. 2018, 30, 1706735.
Y. Cheng, O. Cojocaru-Mirédin, J. Keutgen, Y. Yu, M. Küpers, M. Schumacher, P. Golub, J.-Y. Raty, R. Dronskowski, M. Wuttig, Adv. Mater. 2019, 31, 1904316.
L. Guarneri, S. Jakobs, A. von Hoegen, S. Maier, O. Cojocaru-Mirédin, M. Raghuwanshi, M. Drögeler, C. Stampfer, R. P. S. M. Lobo, A. Piarristeguy, A. Pradel, M. Xu, M. Wuttig, ArXiv: 2008.10219 [cond-mat.mtrl-sci] 2020.
The phrase ‘iono-covalent bonding’ is employed here to describe bonds with both significant ionic and covalent bonding contribution, i.e. covalent bonds with significant polar bond contributions, or ionic bonds with a pronounced covalent contribution. We do not consider iono-covalent bonding as a distinct and fundamental bonding mechanism. Instead the term is employed to describe the transition region from covalent to ionic bonding.
G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem., Int. Ed. 2009, 48, 8616.
P. Garnier, J. Moreau, J. R. Gavarri, Mater. Res. Bull. 1990, 25, 979.
S. Katayama, H. Kawamura, Solid State Commun. 1977, 21, 521.
T. S. Moss, Proc. Phys. Soc., London, Sect. B 1950, 63, 167.
B. J. Kooi, M. Wuttig, Adv. Mater. 2020, 32, 1908302.
R. Hoppe, Z. Kristallogr. 1979, 150, 23.
J. S. Dugdale, D. K. C. Macdonald, Phys. Rev. 1955, 98, 1751.
N. Amirifar, R. Lardé, E. Talbot, P. Pareige, L. Rigutti, L. Mancini, J. Houard, C. Castro, V. Sallet, E. Zehani, S. Hassani, C. Sartel, A. Ziani, X. Portier, J. Appl. Phys. 2015, 118, 215703.
L. Yao, B. Gault, J. M. Cairney, S. P. Ringer, Philos. Mag. Lett. 2010, 90, 121.
L. C. Allen, J. F. Capitani, G. A. Kolks, G. D. Sproul, J. Mol. Struct. 1993, 300, 647.
M. Esser, S. Maintz, R. Dronskowski, J. Comput. Chem. 2017, 38, 620.
W. Welnic, S. Botti, L. Reining, M. Wuttig, Phys. Rev. Lett. 2007, 98, 236403.
M. Wuttig, C.-F. Schön, 2019, https://www.institut-1a.physik.rwth-aachen.de/cms/INSTITUT-1A/Das-Institut/Meldungen/~hgatt/Veroeffentlichung-einer-interaktiven-Mat/?lidx=1 (accessed: October 2020).
Y. Wu, P. Nan, Z. Chen, Z. Zeng, S. Lin, X. Zhang, H. Dong, Z. Chen, H. Gu, W. Li, Y. Chen, B. Ge, Y. Pei, Research 2020, 8151059.
G. Tan, M. Ohta, M. G. Kanatzidis, Phil. Trans. R. Soc. A 2019, 377, 20180450.
C. Gayner, K. K. Kar, W. Kim, Mater. Today Energy 2018, 9, 359.
M. Cagnoni, D. Fuhren, M. Wuttig, Adv. Mater. 2018, 30, 1801787.
M. E. X. Wang, Structural Features and Thermoelectric Properties of PbTe-Based Materials, Dissertation (Doctor rerum naturalium), Technische Universität Dresden, Dresden, Germany 2019, https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-340289.
C. Gayner, K. K. Kar, Prog. Mater. Sci. 2016, 83, 330.
Y. Noda, S. Ohba, S. Sato, Y. Saito, Acta Crystallogr. B 1983, 39, 312.
P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953.
G. Kresse, M. Marsman, J. Furthmüller, Vienna Ab Initio Simulation Package (VASP), The Guide, Computational Materials Physics, Faculty of Physics, Universität Wien, Vienna, Austria 2014.
G. Kresse, J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169.
G. Kresse, J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 558.
G. Kresse, D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758.
X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Calistae, R. Caracas, M. Coté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. R. Haman, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, J. W. Zwanziger, Comput. Phys. Commun. 2009, 180, 2582.
M. Torrent, F. Jollet, F. Bottin, G. Zerah, X. Gonze, Comput. Mater. Sci. 2008, 42, 337.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
M. Yu, D. R. Trinkle, J. Chem. Phys. 2011, 134, 064111.
M. Kohout, DGrid, version 4.6, Radebeul, Germany 2011.
R. F. W. Bader, M. E. Stephens, J. Am. Chem. Soc. 1975, 97, 7391.
X. Fradera, M. A. Austen, R. F. W. Bader, J. Phys. Chem. A 1999, 103, 304.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.