[en] The full blossoming of quantum technologies requires the availability of easy-to-prepare materials where quantum coherences can be effectively initiated, controlled, and exploited, preferably at ambient conditions. Solid-state multilayers of colloidally grown quantum dots (QDs) are highly promising for this task because of the possibility of assembling networks of electronically coupled QDs through the modulation of sizes, inter-dot linkers, and distances. To usefully probe coherence in
these materials, the dynamical characterization of their collective quantum mechanically coupled states is needed. Here, we explore by two-dimensional electronic spectroscopy the coherent dynamics of solid-state multilayers of electronically coupled colloidally grown CdSe QDs and complement it by detailed computations. The time evolution of a coherent superposition of states delocalized
over more than one QD was captured at ambient conditions. We thus provide important evidence for inter-dot coherences in such solid-state materials, opening up new avenues for the effective application of these materials in quantum technologies.
Research Center/Unit :
MolSys - Molecular Systems - ULiège
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Collini, Elisabetta
Gattuso, Hugo ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Kolodny, Yuval
Bolzonello, Luca
Volpato, Andrea
Fridman, Hanna T.
Yochelis, Shira
Mor, Morin
Dehnel, Johanna
Lifshitz, Efrat
Paltiel, Yossi
Levine, Raphael D.
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Schleich, W. P.; Ranade, K. S.; Anton, C.; Arndt, M.; Aspelmeyer, M.; Bayer, M.; Berg, G.; Calarco, T.; Fuchs, H.; Giacobino, E. et al. Quantum Technology: From Research to Application. Appl. Phys. B 2016, 122, 130, 10.1007/s00340-016-6353-8
Cao, J.; Cogdell, R. J.; Coker, D. F.; Duan, H.-G.; Hauer, J.; Kleinekathöfer, U.; Jansen, T. L. C.; Mančal, T.; Miller, R. J. D.; Ogilvie, J. P. et al. Quantum Biology Revisited. Sci. Adv. 2020, 6, eaaz4888 10.1126/sciadv.aaz4888
Schlosshauer, M. A. Decoherence and the Quantum-To-Classical Transition; Springer-Verlag Berlin Heidelberg: Berlin, 2007.
Hepp, S.; Jetter, M.; Portalupi, S. L.; Michler, P. Semiconductor Quantum Dots for Integrated Quantum Photonics. Adv. Quantum Technol. 2019, 2, 1900020, 10.1002/qute.201900020
Quantum Dots for Quantum Information Technologies; Michler, P., Ed.; Springer International Publishing: Cham, 2017.
Woggon, U. Optical Properties of Semiconductor Quantum Dots; Springer Tracts in Modern Physics; Springer-Verlag: Berlin, Heidelberg, 2014.
Awschalom, D. D.; Hanson, R.; Wrachtrup, J.; Zhou, B. B. Quantum Technologies with Optically Interfaced Solid-State Spins. Nat. Photonics 2018, 12, 516-527, 10.1038/s41566-018-0232-2
Zhong, T.; Goldner, P. Emerging Rare-Earth Doped Material Platforms for Quantum Nanophotonics. Nanophotonics 2019, 8, 2003-2015, 10.1515/nanoph-2019-0185
Kagan, C. R.; Murray, C. B. Charge Transport in Strongly Coupled Quantum Dot Solids. Nat. Nanotechnol. 2015, 10, 1013-1026, 10.1038/nnano.2015.247
Kholmicheva, N.; Moroz, P.; Eckard, H.; Jensen, G.; Zamkov, M. Energy Transfer in Quantum Dot Solids. ACS Energy Lett. 2017, 2, 154-160, 10.1021/acsenergylett.6b00569
Zheng, K.; Žídek, K.; Abdellah, M.; Zhu, N.; Chábera, P.; Lenngren, N.; Chi, Q.; Pullerits, T. Directed Energy Transfer in Films of CdSe Quantum Dots: Beyond the Point Dipole Approximation. J. Am. Chem. Soc. 2014, 136, 6259-6268, 10.1021/ja411127w
Osovsky, R.; Shavel, A.; Gaponik, N.; Amirav, L.; Eychmüller, A.; Weller, H.; Lifshitz, E. Electrostatic and Covalent Interactions in CdTe Nanocrystalline Assemblies. J. Phys. Chem. B 2005, 109, 20244-20250, 10.1021/jp0526795
Crisp, R. W.; Schrauben, J. N.; Beard, M. C.; Luther, J. M.; Johnson, J. C. Coherent Exciton Delocalization in Strongly Coupled Quantum Dot Arrays. Nano Lett. 2013, 13, 4862-4869, 10.1021/nl402725m
Artemyev, M. V.; Woggon, U.; Jaschinski, H.; Gurinovich, L. I.; Gaponenko, S. V. Spectroscopic Study of Electronic States in an Ensemble of Close-Packed CdSe Nanocrystals. J. Phys. Chem. B 2000, 104, 11617-11621, 10.1021/jp002085w
Mićić, O. I.; Ahrenkiel, S. P.; Nozik, A. J. Synthesis of Extremely Small InP Quantum Dots and Electronic Coupling in Their Disordered Solid Films. Appl. Phys. Lett. 2001, 78, 4022-4024, 10.1063/1.1379990
Pelzer, K. M.; Griffin, G. B.; Gray, S. K.; Engel, G. S. Inhomogeneous Dephasing Masks Coherence Lifetimes in Ensemble Measurements. J. Chem. Phys. 2012, 136, 164508, 10.1063/1.4704591
Stone, K. W.; Gundogdu, K.; Turner, D. B.; Li, X.; Cundiff, S. T.; Nelson, K. A. Two-Quantum 2D FT Electronic Spectroscopy of Biexcitons in GaAs Quantum Wells. Science 2009, 324, 1169-1173, 10.1126/science.1170274
Turner, D. B.; Nelson, K. A. Coherent Measurements of High-Order Electronic Correlations in Quantum Wells. Nature 2010, 466, 1089-1092, 10.1038/nature09286
Hao, K.; Xu, L.; Nagler, P.; Singh, A.; Tran, K.; Dass, C. K.; Schüller, C.; Korn, T.; Li, X.; Moody, G. Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2. Nano Lett. 2016, 16, 5109-5113, 10.1021/acs.nanolett.6b02041
Moody, G.; Singh, R.; Li, H.; Akimov, I. A.; Bayer, M.; Reuter, D.; Wieck, A. D.; Bracker, A. S.; Gammon, D.; Cundiff, S. T. Influence of Confinement on Biexciton Binding in Semiconductor Quantum Dot Ensembles Measured with Two-Dimensional Spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 041304(R) 10.1103/physrevb.87.041304
Cohen, E.; Gruber, M.; Romero, E.; Yochelis, S.; Van Grondelle, R.; Paltiel, Y. Properties of Self-Assembled Hybrid Organic Molecule/Quantum Dot Multilayered Structures. J. Phys. Chem. C 2014, 118, 25725-25730, 10.1021/jp507825r
Cohen, E.; Komm, P.; Rosenthal-Strauss, N.; Dehnel, J.; Lifshitz, E.; Yochelis, S.; Levine, R. D.; Remacle, F.; Fresch, B.; Marcus, G. et al. Fast Energy Transfer in CdSe Quantum Dot Layered Structures: Controlling Coupling with Covalent-Bond Organic Linkers. J. Phys. Chem. C 2018, 122, 5753-5758, 10.1021/acs.jpcc.7b11799
Cohen, E.; Gdor, I.; Romero, E.; Yochelis, S.; Van Grondelle, R.; Paltiel, Y. Achieving Exciton Delocalization in Quantum Dot Aggregates Using Organic Linker Molecules. J. Phys. Chem. Lett. 2017, 8, 1014-1018, 10.1021/acs.jpclett.6b02980
Grumbach, N.; Capek, R. K.; Tilchin, E.; Rubin-Brusilovski, A.; Yang, J.; Ein-Eli, Y.; Lifshitz, E. Comprehensive Route to the Formation of Alloy Interface in Core/Shell Colloidal Quantum Dots. J. Phys. Chem. C 2015, 119, 12749-12756, 10.1021/acs.jpcc.5b03086
Bolzonello, L.; Volpato, A.; Meneghin, E.; Collini, E. Versatile Setup for High-Quality Rephasing, Non-Rephasing, and Double Quantum 2D Electronic Spectroscopy. J. Opt. Soc. Am. B 2017, 34, 1223, 10.1364/josab.34.001223
Volpato, A.; Bolzonello, L.; Meneghin, E.; Collini, E. Global Analysis of Coherence and Population Dynamics in 2D Electronic Spectroscopy. Opt. Express 2016, 24, 24773-24785, 10.1364/oe.24.024773
Volpato, A.; Collini, E. Time-Frequency Methods for Coherent Spectroscopy. Opt. Express 2015, 23, 20040-20050, 10.1364/oe.23.020040
Volpato, A.; Collini, E. Optimization and Selection of Time-Frequency Transforms for Wave-Packet Analysis in Ultrafast Spectroscopy. Opt. Express 2019, 27, 2975-2987, 10.1364/oe.27.002975
Collini, E.; Gattuso, H.; Bolzonello, L.; Casotto, A.; Volpato, A.; Dibenedetto, C. N.; Fanizza, E.; Striccoli, M.; Remacle, F. Quantum Phenomena in Nanomaterials: Coherent Superpositions of Fine Structure States in CdSe Nanocrystals at Room Temperature. J. Phys. Chem. C 2019, 123, 31286-31293, 10.1021/acs.jpcc.9b11153
Gattuso, H.; Fresch, B.; Levine, R. D.; Remacle, F. Coherent Exciton Dynamics in Ensembles of Size-Dispersed CdSe Quantum Dot Dimers Probed via Ultrafast Spectroscopy: A Quantum Computational Study. Appl. Sci. 2020, 10, 1328, 10.3390/app10041328
Klimov, V. I. Nanocrystal Quantum Dots, 2 nd ed.; CRC Press: Boca Raton, FL, 2010.
Righetto, M.; Bolzonello, L.; Volpato, A.; Amoruso, G.; Panniello, A.; Fanizza, E.; Striccoli, M.; Collini, E. Deciphering hot-and multi-exciton dynamics in core-shell QDs by 2D electronic spectroscopies. Phys. Chem. Chem. Phys. 2018, 20, 18176-18183, 10.1039/c8cp02574f
Cassette, E.; Dean, J. C.; Scholes, G. D. Two-Dimensional Visible Spectroscopy For Studying Colloidal Semiconductor Nanocrystals. Small 2016, 12, 2234-2244, 10.1002/smll.201502733
Kambhampati, P. Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots. Acc. Chem. Res. 2011, 44, 1-13, 10.1021/ar1000428
Caram, J. R.; Zheng, H.; Dahlberg, P. D.; Rolczynski, B. S.; Griffin, G. B.; Dolzhnikov, D. S.; Talapin, D. V.; Engel, G. S. Exploring Size and State Dynamics in CdSe Quantum Dots Using Two-Dimensional Electronic Spectroscopy. J. Chem. Phys. 2014, 140, 084701, 10.1063/1.4865832
Volpato, A. fitko-Global Fit of 2DES data. https://github.com/MUOSColliniLab/fitko (accessed on Nov 7, 2018). https://doi.org/10.5281/zenodo.1479145.
Bolzonello, L.; Polo, A.; Volpato, A.; Meneghin, E.; Cordaro, M.; Trapani, M.; Fortino, M.; Pedone, A.; Castriciano, M. A.; Collini, E. Two-Dimensional Electronic Spectroscopy Reveals Dynamics and Mechanisms of Solvent-Driven Inertial Relaxation in Polar BODIPY Dyes. J. Phys. Chem. Lett. 2018, 9, 1079-1085, 10.1021/acs.jpclett.7b03393
Meneghin, E.; Volpato, A.; Cupellini, L.; Bolzonello, L.; Jurinovich, S.; Mascoli, V.; Carbonera, D.; Mennucci, B.; Collini, E. Coherence in Carotenoid-to-Chlorophyll Energy Transfer. Nat. Commun. 2018, 9, 3160, 10.1038/s41467-018-05596-5
Seibt, J.; Pullerits, T. Beating Signals in 2D Spectroscopy: Electronic or Nuclear Coherences? Application to a Quantum Dot Model System. J. Phys. Chem. C 2013, 117, 18728-18737, 10.1021/jp406103m
Seibt, J.; Hansen, T.; Pullerits, T. 3D Spectroscopy of Vibrational Coherences in Quantum Dots: Theory. J. Phys. Chem. B 2013, 117, 11124-11133, 10.1021/jp4011444
Palato, S.; Seiler, H.; Nijjar, P.; Prezhdo, O.; Kambhampati, P. Atomic Fluctuations in Electronic Materials Revealed by Dephasing. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 11940-11946, 10.1073/pnas.1916792117
Dong, S.; Trivedi, D.; Chakrabortty, S.; Kobayashi, T.; Chan, Y.; Prezhdo, O. V.; Loh, Z.-H. Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals. Nano Lett. 2015, 15, 6875-6882, 10.1021/acs.nanolett.5b02786
Kelley, A. M. Electron-Phonon Coupling in CdSe Nanocrystals. J. Phys. Chem. Lett. 2010, 1, 1296-1300, 10.1021/jz100123b
Liu, A.; Almeida, D. B.; Bae, W. K.; Padilha, L. A.; Cundiff, S. T. Non-Markovian Exciton-Phonon Interactions in Core-Shell Colloidal Quantum Dots at Femtosecond Timescales. Phys. Rev. Lett. 2019, 123, 057403, 10.1103/physrevlett.123.057403
Kelley, A. M. Exciton-Optical Phonon Coupling in II-VI Semiconductor Nanocrystals. J. Chem. Phys. 2019, 151, 140901, 10.1063/1.5125147
Pal, S.; Trivedi, D. J.; Akimov, A. V.; Aradi, B.; Frauenheim, T.; Prezhdo, O. V. Nonadiabatic Molecular Dynamics for Thousand Atom Systems: A Tight-Binding Approach toward PYXAID. J. Chem. Theory Comput. 2016, 12, 1436-1448, 10.1021/acs.jctc.5b01231
Kobayashi, Y.; Chuang, C.-H.; Burda, C.; Scholes, G. D. Exploring Ultrafast Electronic Processes of Quasi-Type II Nanocrystals by Two-Dimensional Electronic Spectroscopy. J. Phys. Chem. C 2014, 118, 16255-16263, 10.1021/jp504559s
Seiler, H.; Palato, S.; Sonnichsen, C.; Baker, H.; Kambhampati, P. Seeing Multiexcitons through Sample Inhomogeneity: Band-Edge Biexciton Structure in CdSe Nanocrystals Revealed by Two-Dimensional Electronic Spectroscopy. Nano Lett. 2018, 18, 2999-3006, 10.1021/acs.nanolett.8b00470
Caram, J. R.; Zheng, H.; Dahlberg, P. D.; Rolczynski, B. S.; Griffin, G. B.; Fidler, A. F.; Dolzhnikov, D. S.; Talapin, D. V.; Engel, G. S. Persistent Interexcitonic Quantum Coherence in CdSe Quantum Dots. J. Phys. Chem. Lett. 2014, 5, 196-204, 10.1021/jz402336t
Cassette, E.; Pensack, R. D.; Mahler, B.; Scholes, G. D. Room-Temperature Exciton Coherence and Dephasing in Two-Dimensional Nanostructures. Nat. Commun. 2015, 6, 6086, 10.1038/ncomms7086
Turner, D. B.; Hassan, Y.; Scholes, G. D. Exciton Superposition States in CdSe Nanocrystals Measured Using Broadband Two-Dimensional Electronic Spectroscopy. Nano Lett. 2012, 12, 880-886, 10.1021/nl2039502
Cui, J.; Panfil, Y. E.; Koley, S.; Shamalia, D.; Waiskopf, N.; Remennik, S.; Popov, I.; Oded, M.; Banin, U. Colloidal Quantum Dot Molecules Manifesting Quantum Coupling at Room Temperature. Nat. Commun. 2019, 10, 5401, 10.1038/s41467-019-13349-1
Efros, A. L.; Rosen, M. The Electronic Structure of Semiconductor Nanocrystals. Annu. Rev. Mater. Sci. 2000, 30, 475-521, 10.1146/annurev.matsci.30.1.475
Sercel, P. C.; Efros, A. L. Band-Edge Exciton in CdSe and Other II-VI and III-V Compound Semiconductor Nanocrystals-Revisited. Nano Lett. 2018, 18, 4061-4068, 10.1021/acs.nanolett.8b01980
Norris, D. J.; Bawendi, M. G. Measurement and Assignment of the Size-Dependent Optical Spectrum in CdSe Quantum Dots. Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 53, 16338-16346, 10.1103/physrevb.53.16338
Wong, C. Y.; Scholes, G. D. Using Two-Dimensional Photon Echo Spectroscopy to Probe the Fine Structure of the Ground State Biexciton of CdSe Nanocrystals. J. Lumin. 2011, 131, 366-374, 10.1016/j.jlumin.2010.09.015
Prezhdo, O. V. Photoinduced Dynamics in Semiconductor Quantum Dots: Insights from Time-Domain Ab Initio Studies. Acc. Chem. Res. 2009, 42, 2005-2016, 10.1021/ar900157s
Kasha, M.; Rawls, H. R.; Ashraf El-Bayoumi, M. The Exciton Model in Molecular Spectroscopy. Pure Appl. Chem. 1965, 11, 371-392, 10.1351/pac196511030371
Huelga, S. F.; Plenio, M. B. Vibrations, Quanta and Biology. Contemp. Phys. 2013, 54, 181-207, 10.1080/00405000.2013.829687
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.