[en] Interdot coherent excitonic dynamics in nanometric colloidal CdSe quantum dots (QD) dimers lead to interdot charge migration and energy transfer. We show by electronic quantum dynamical simulations that the interdot coherent response to ultrashort fs laser pulses can be characterized by pump-probe transient absorption spectroscopy in spite of the inevitable inherent size dispersion of colloidal QDs. The latter, leading to a broadening of the excitonic bands, induce accidental resonances that actually increase the efficiency of the interdot coupling. The optical electronic response is computed by solving the time-dependent Schrodinger equation including the interaction with the oscillating electric field of the pulses for an ensemble of dimers that differ by their size. The excitonic Hamiltonian of each dimer is parameterized by the QD size and interdot distance, using an effective mass approximation. Local and charge transfer excitons are included in the dimer basis set. By tailoring the QD size, the excitonic bands can be tuned to overlap and thus favor interdot coupling. Computed pump-probe transient absorption maps averaged over the ensemble show that the coherence of excitons in QD dimers that lead to interdot charge migration can survive size disorder and could be observed in fs pump-probe, four-wave mixing, or covariance spectroscopy.
Research Center/Unit :
MolSys - Molecular Systems - ULiège
Disciplines :
Chemistry
Author, co-author :
Gattuso, Hugo ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Fresch, Barbara
Levine, D. Raphael
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Language :
English
Title :
Coherent Exciton Dynamics in Ensembles of Size-Dispersed CdSe Quantum Dot Dimers Probed via Ultrafast Spectroscopy: A Quantum Computational Study
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Koole, R.; Liljeroth, P.; de Mello Donegá, C.; Vanmaekelbergh, D.; Meijerink, A. Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules. J. Am. Chem. Soc. 2006, 128, 10436-10441. [CrossRef]
Cohen, E.; Komm, P.; Rosenthal-Strauss, N.; Dehnel, J.; Lifshitz, E.; Yochelis, S.; Levine, R.D.; Remacle, F.; Fresch, B.; Marcus, G.; et al. Fast Energy Transfer in CdSe Quantum Dot Layered Structures: Controlling Coupling with Covalent-Bond Organic Linkers. J. Phys. Chem. C 2018, 122, 5753-5758. [CrossRef]
Grimaldi, G.; Crisp, R.W.; ten Brinck, S.; Zapata, F.; van Ouwendorp, M.; Renaud, N.; Kirkwood, N.; Evers, W.H.; Kinge, S.; Infante, I.; et al. Hot-electron transfer in quantum-dot heterojunction films. Nat. Commun. 2018, 9, 2310. [CrossRef]
Kagan, C.R.; Lifshitz, E.; Sargent, E.H.; Talapin, D.V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523. [CrossRef] [PubMed]
Talapin, D.V.; Lee, J.-S.; Kovalenko, M.V.; Shevchenko, E.V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110, 389-458. [CrossRef] [PubMed]
Panfil, Y.E.; Oded, M.; Banin, U. Colloidal Quantum Nanostructures: Emerging Materials for Display Applications. Angew. Chem. Int. Ed. 2018, 57, 4274-4295. [CrossRef] [PubMed]
Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715. [CrossRef]
Kagan, C.R.; Murray, C.B.; Nirmal, M.; Bawendi, M.G. Electronic Energy Transfer in CdSe Quantum Dot Solids. Phys. Rev. Lett. 1996, 76, 1517-1520. [CrossRef]
Norris, D.J.; Bawendi, M.G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 1996, 53, 16338-16346. [CrossRef]
Efros, A.L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D.J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843-4856. [CrossRef]
Soloviev, V.N.; Eichhöfer, A.; Fenske, D.; Banin, U. Size-Dependent Optical Spectroscopy of a Homologous Series of CdSe Cluster Molecules. J. Am. Chem. Soc. 2001, 123, 2354-2364. [CrossRef]
Sercel, P.C.; Efros, A.L. Band-Edge Exciton in CdSe and Other II-VI and III-V Compound Semiconductor Nanocrystals-Revisited. Nano Lett. 2018, 18, 4061-4068. [CrossRef]
Sercel, P.C.; Shabaev, A.; Efros, A.L. Photoluminescence Enhancement through Symmetry Breaking Induced by Defects in Nanocrystals. Nano Lett. 2017, 17, 4820-4830. [CrossRef]
Ma, H.; Jin, Z.; Zhang, Z.; Li, G.; Ma, G. Exciton Spin Relaxation in Colloidal CdSe Quantum Dots at Room Temperature. J. Phys. Chem. A 2012, 116, 2018-2023. [CrossRef] [PubMed]
Huxter, V.M.; Scholes, G.D. Acoustic phonon strain induced mixing of the fine structure levels in colloidal CdSe quantum dots observed by a polarization grating technique. J. Chem. Phys. 2010, 132, 104506. [CrossRef] [PubMed]
Caram, J.R.; Zheng, H.; Dahlberg, P.D.; Rolczynski, B.S.; Griffin, G.B.; Dolzhnikov, D.S.; Talapin, D.V.; Engel, G.S. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy. J. Chem. Phys. 2014, 140, 084701. [CrossRef] [PubMed]
Dong, S.; Trivedi, D.; Chakrabortty, S.; Kobayashi, T.; Chan, Y.; Prezhdo, O.V.; Loh, Z.-H. Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals. Nano Lett. 2015, 15, 6875-6882. [CrossRef]
Janke, E.M.; Williams, N.E.; She, C.; Zherebetskyy, D.; Hudson, M.H.; Wang, L.; Gosztola, D.J.; Schaller, R.D.; Lee, B.; Sun, C.; et al. Origin of Broad Emission Spectra in InP Quantum Dots: Contributions from Structural and Electronic Disorder. J. Am. Chem. Soc. 2018, 140, 15791-15803. [CrossRef]
Cassette, E.; Pensack, R.D.; Mahler, B.; Scholes, G.D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 2015, 6, 6086. Available online: https://www.nature.com/ articles/ncomms7O86#supplementary-information (accessed on 15 January 2015). [CrossRef]
Wong, C.Y.; Scholes, G.D. Biexcitonic Fine Structure of CdSe Nanocrystals Probed by Polarization-Dependent Two-Dimensional Photon Echo Spectroscopy. J. Phys. Chem. A 2011, 115, 3797-3806. [CrossRef]
Turner, D.B.; Hassan, Y.; Scholes, G.D. Exciton Superposition States in CdSe Nanocrystals Measured Using Broadband Two-Dimensional Electronic Spectroscopy. Nano Lett. 2012, 12, 880-886. [CrossRef]
Collini, E.; Gattuso, H.; Bolzonello, L.; Casotto, A.; Volpato, A.; Dibenedetto, C.N.; Fanizza, E.; Striccoli, M.; Remacle, F. Quantum Phenomena in Nanomaterials: Coherent Superpositions of Fine Structure States in CdSe Nanocrystals at Room Temperature. J. Phys. Chem. C 2019. [CrossRef]
Klimov, V.l.; McBranch, D.W.; Leatherdale, C.A.; Bawendi, M.G. Electron and hole relaxation pathways in semiconductor quantum dots. Phys. Rev. B 1999, 60, 13740-13749. [CrossRef]
Klimov, V.I. Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals: Implications for Lasing and Solar Energy Conversion. J. Phys. B 2006, 110, 16827-16845.
Mlinar, V.; Zunger, A. Internal electronic structure and fine structure of multiexcitons in semiconductor quantum dots. Phys. Rev. B 2009, 80, 205311. [CrossRef]
Sewall, S.L.; Franceschetti, A.; Cooney, R.R.; Zunger, A. Direct observation of the structure of band-edge biexcitons in colloidal semiconductor CdSe quantum dots. Phys. Rev. B 2009, 80, 081310. [CrossRef]
Trivedi, D.J.; Wang, L.; Prezhdo, O.V. Auger-Mediated Electron Relaxation Is Robust to Deep Hole Traps: Time-Domain Ab Initio Study of CdSe Quantum Dots. Nano Lett. 2015, 15, 2086-2091. [CrossRef]
Morgan, N.Y.; Leatherdale, C.A.; Drndic, M.; Jarosz, M.V.; Kastner, M.A.; Bawendi, M. Electronic transport in films of colloidal CdSe nanocrystals. Phys. Rev. B 2002, 66, 075339. [CrossRef]
Liang, Y.; Thorne, J.E.; Parkinson, B.A. Controlling the Electronic Coupling between CdSe Quantum Dots and Thiol Capping Ligands via pH and Ligand Selection. Langmuir 2012, 28, 11072-11077. [CrossRef]
Ginger, D.S.; Greenham, N.C. Charge injection and transport in films of CdSe nanocrystals. J. Appl. Phys. 2000, 87, 1361-1368. [CrossRef]
Lee, J.-S.; Kovalenko, M.V.; Huang, J.; Chung, D.S.; Talapin, D.V. Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arrays. Nat. Nanotechnol. 2011, 6, 348. Available online: https://www.nature.com/articles/nnano.2011.46#supplementary-information (accessed on 24 April 2011). [CrossRef]
Brus, L.E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403-4409. [CrossRef]
Wang, Y.; Herron, N. Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 1991, 95, 525-532. [CrossRef]
Koole, R.; Groeneveld, E.; Vanmaekelbergh, D.; Meijerink, A.; deMelloDonega, C. Size Effect on Semiconductor Nanoparticles. In Nanoparticles; deMelloDonega, C., Ed.; Springer: Berlin, Germany, 2014.
Zunger, A. Electronic Structure Theory of Semiconductor Quantum Dots. MRS Bull. 1998, 23, 35-42. [CrossRef]
Prezhdo, O.V. Photoinduced Dynamics in Semiconductor Quantum Dots: Insights from Time-Domain ab Initio Studies. Acc. Chem. Res. 2009, 42, 2005-2016. [CrossRef]
Wang, L.-W.; Zunger, A. Pseudopotential calculations of nanoscale CdSe quantum dots. Phys. Rev. B 1996, 53, 9579-9582. [CrossRef]
Wang, Z.A. High-Energy Excitonic Transitions in CdSe Quantum Dots. J. Phys. Chem. B 1998, 102, 6449-6454. [CrossRef]
Wang, Y.; Liu, Y.-H.; Zhang, Y.; Kowalski, P.J.; Rohrs, H.W.; Buhro, W.E. Preparation of Primary Amine Derivatives of the Magic-Size Nanocluster (CdSe)13. Inorg. Chem. 2013, 52, 2933-2938. [CrossRef]
Vogl, P.; Hjalmarson, H.P.; Dow, J.D. A semi-empirical tigh-binding theory of the electronic structure of semicoductors. J. Phys. Chem. Sol. 1983, 44, 365-378. [CrossRef]
Klimeck, G.; Oyafuso, F.; Boykin, T.B.; Bowen, R.C.; Allmen, P.V. Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots. CMES 2002, 3, 602-642.
Lee, S.; Jönsson, L.; Wilkins, J.W.; Bryant, G.W.; Klimeck, G. Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions. Phys. Rev. B 2001, 63, 195318. [CrossRef]
Kilina, S.V.; Kilin, D.S.; Prezhdo, O.V. Breaking the Phonon Bottleneck in PbSe and CdSe Quantum Dots: Time-Domain Density Functional Theory of Charge Carrier Relaxation. ACS Nano 2009, 3, 93-99. [CrossRef] [PubMed]
Pal, S.; Trivedi, D.J.; Akimov, A.V.; Aradi, B.; Frauenheim, T.; Prezhdo, O.V. Nonadiabatic Molecular Dynamics for Thousand Atom Systems: A Tight-Binding Approach toward PYXAID. J. Chem. Theory Comput. 2016, 12, 1436-1448. [CrossRef] [PubMed]
Luttinger, J.M.; Kohn, W. Motion of Electrons and Holes in Perturbed Periodic Fields. Phys. Rev. 1955, 97, 869-883. [CrossRef]
Brus, L. Electronic wave functions in semiconductor clusters: Experiment and theory. J. Phys. Chem. 1986, 90, 2555-2560. [CrossRef]
Efros, A.L. Luminescence polarization of CdSe microcrystals. Phys. Rev. B 1992, 46, 7448-7458. [CrossRef]
Efros, A.L.; Rosen, M. The electronic structure of semi-conducting nanocrystal. Ann. Rev. Mater. Sci. 2000, 30, 475-521. [CrossRef]
Lovett, B.W.; Reina, J.H.; Nazir, A.; Briggs, G.A.D. Optical schemes for quantum computation in quantum dot molecules. Phys. Rev. B 2003, 68, 205319. [CrossRef]
Kruchinin, S.Y.; Fedorov, A.V.; Baranov, A.V.; Perova, T.S.; Berwick, K. Resonant energy transfer in quantum dots: Frequency-domain luminescent spectroscopy. Phys. Rev. B 2008, 78, 125311. [CrossRef]
Kruchinin, S.Y.; Fedorov, A.V.; Baranov, A.V.; Perova, T.S.; Berwick, K. Electron-electron scattering in a double quantum dot: Effective mass approach. J. Chem. Phys. 2010, 133, 104704. [CrossRef]
Troiani, F.; Hohenester, U.; Molinari, E. Electron-hole localization in coupled quantum dots. Phys. Rev. B 2002, 65, 161301. [CrossRef]
Seibt, J.; Pullerits, T. Beating Signals in 2D Spectroscopy: Electronic or Nuclear Coherences? Application to a Quantum Dot Model System. J. Phys. Chem. C 2013, 117, 18728-18737. [CrossRef]
Seibt, J.; Hansen, T.; Pullerits, T. 3D Spectroscopy of Vibrational Coherences in Quantum Dots: Theory. J. Phys. Chem. B 2013, 117, 11124-11133. [CrossRef] [PubMed]
Karki, K.J.; Ma, F.; Zheng, K.; Zidek, K.; Mousa, A.; Abdellah, M.A.; Messing, M.E.; Wallenberg, L.R.; Yartsev, A.; Pullerits, T. Multiple exciton generation in nano-crystals revisited: Consistent calculation of the yield based on pump-probe spectroscopy. Sci. Rep. 2013, 3, 2287. [CrossRef]
Wang, H.; de Mello Donegá, C.; Meijerink, A.; Glasbeek, M. Ultrafast Exciton Dynamics in CdSe Quantum Dots Studied from Bleaching Recovery and Fluorescence Transients. J. Phys. Chem. B 2006, 110, 733-737. [CrossRef]
Kambhampati, P. Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale. J. Phys. Chem. C 2011, 115, 22089-22109. [CrossRef]
Zídek, K.; Zheng, K.; Ponseca, C.S.; Messing, M.E.; Wallenberg, L.R.; Chábera, P.; Abdellah, M.; Sundström, V.; Pullerits, T. Electron Transfer in Quantum-Dot-Sensitized ZnO Nanowires: Ultrafast Time-Resolved Absorption and Terahertz Study. J. Am. Chem. Soc. 2012, 134, 12110-12117. [CrossRef]
Walsh, B.R.; Sonnichsen, C.; Mack, T.G.; Saari, J.I.; Krause, M.M.; Nick, R.; Coe-Sullivan, S.; Kambhampati, P. Excited State Phononic Processes in Semiconductor Nanocrystals Revealed by Excitonic State-Resolved Pump/Probe Spectroscopy. J. Phys. Chem. C 2019, 123, 3868-3875. [CrossRef]
Scholes, G.D. Coherence from Light Harvesting to Chemistry. J. Phys. Chem. Lett. 2018, 9, 1568-1572. [CrossRef]
Fresch, B.; Cipolloni, M.; Yan, T.-M.; Collini, E.; Levine, R.D.; Remacle, F. Parallel and Multivalued Logic by the Two-Dimensional Photon-Echo Response of a Rhodamine-DNA Complex. J. Phys. Chem. Lett. 2015, 6, 1714-1718. [CrossRef]
Fresch, B.; Hiluf, D.; Collini, E.; Levine, R.D.; Remacle, F. Molecular decision trees realized by ultrafast electronic spectroscopy. Proc. Natl. Acad. Sci. USA 2013, 110, 17183-17188. [CrossRef] [PubMed]
Fu, H.; Wang, L.-W.; Zunger, A. Excitonic exchange splitting in bulk semiconductors. Phys. Rev. B 1999, 59, 5568-5574. [CrossRef]
Wang, L.-W.; Zunger, A. Local-density-derived semiempirical pseudopotentials. Phys. Rev. B 1995, 51, 17398-17416. [CrossRef] [PubMed]
Kelley, A.M. Electron-Phonon Coupling in CdSe Nanocrystals from an Atomistic Phonon Model. ACS Nano 2011, 5, 5254-5262. [CrossRef] [PubMed]
Knox, R.S. Solid State Physics; Academic: New York, NY, USA, 1963; Volume 5.
Franceschetti, A.; Fu, H.; Wang, L.W.; Zunger, A. Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 1999, 60, 1819-1829. [CrossRef]
Ferreyra, J.M.; Proetto, C.R. Quantum size effects on excitonic Coulomb and exchange energies in finite-barrier semiconductor quantum dots. Phys. Rev. B 1999, 60, 10672-10675. [CrossRef]
Specht, J.F.; Knorr, A.; Richter, M. Two-dimensional spectroscopy: An approach to distinguish F\orster and Dexter transfer processes in coupled nanostructures. Phys. Rev. B 2015, 91, 155313. [CrossRef]
Akimov, A.V.; Prezhdo, O.V. Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field. Chem. Rev. 2015, 115, 5797-5890. [CrossRef]
Kelley, A.M. Electron-Phonon Coupling in CdSe Nanocrystals. J. Phys. Chem. Lett. 2010, 1, 1296-1300. [CrossRef]
Salvador, M.R.; Graham, M.W.; Scholes, G.D. Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. J. Chem. Phys. 2006, 125, 184709. [CrossRef]
Klimov, V.I. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals. J. Phys. Chem. B 2000, 104, 6112-6123. [CrossRef]
Crooker, S.A.; Hollingsworth, J.A.; Tretiak, S.; Klimov, V.I. Spectrally Resolved Dynamics of Energy Transfer in Quantum-Dot Assemblies: Towards Engineered Energy Flows in Artificial Materials. Phys. Rev. Lett. 2002, 89, 186802. [CrossRef] [PubMed]
Seidner, L.; Stock, G.; Domcke, W. Nonperturbative approach to femtosecond spectroscopy: General theory and application to multidimensional nonadiabatic photoisomerization processes. J. Chem. Phys. 1995, 103, 3998-4011. [CrossRef]
Mengxi, W.; Shaohao, C.; Seth, C.; Kenneth, J.S.; Mette, B.G. Theory of strong-field attosecond transient absorption. J. Phys. B 2016, 49, 062003.
Lin, C.; Gong, K.; Kelley, D.F.; Kelley, A.M. Size-Dependent Exciton-Phonon Coupling in CdSe Nanocrystals through Resonance Raman Excitation Profile Analysis. J. Phys. Chem. C 2015, 119, 7491-7498. [CrossRef]
Chistyakov, A.A.; Zvaigzne, M.A.; Nikitenko, V.R.; Tameev, A.R.; Martynov, I.L.; Prezhdo, O.V. Optoelectronic Properties of Semiconductor Quantum Dot Solids for Photovoltaic Applications. J. Phys. Chem. Lett. 2017, 8, 4129-4139. [CrossRef] [PubMed]
Hu, Z.; Engel, G.S.; Kais, S. Double-excitation manifold's effect on exciton transfer dynamics and the efficiency of coherent light harvesting. Phys. Chem. Chem. Phys. 2018, 20, 30032-30040. [CrossRef]
Yan, T.-M.; Fresch, B.; Levine, R.D.; Remacle, F. Information processing in parallel through directionally resolved molecular polarization components in coherent multidimensional spectroscopy. J. Chem. Phys. 2015, 143, 064106. [CrossRef]
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.