[en] We show in a joint experimental and theoretical study that ultrafast femto-second (fs) electronic coherences can be characterized in semiconducting colloidal quantum dot (QD) assemblies at room temperature. The dynamics of the electronic response of ensembles of CdSe QDs in the solution and of QD dimers in the solid state is probed by a sequence of 3 fs laser pulses as in two-dimensional (2D) electronic spectroscopy. The quantum dynamics is computed using an excitonic model Hamiltonian based on the effective mass approximation. The Hamiltonian includes the Coulomb, spin–orbit, and crystal field interactions that give rise to the fine structure splittings. In the dimers studied, the interdot distance is sufficiently small to allow for an efficient interdot coupling and delocalization of the excitons over the two QDs of the dimer. To account for the inherent few percent size dispersion of colloidal QDs, the optical response is modeled by averaging over
an ensemble of 2000 dimers. The size dispersion is responsible for an inhomogeneous broadening that limits the lifetimes of the excitonic coherences that can be probed to about 150 fs–200 fs. Simulations and experimental measurements in the solid state and in the solution demonstrate that during that time scale, a very rich electronic coherent dynamics takes place that involves several types of intradot and interdot (in the case of dimers) coherences. These electronic coherences exhibit a wide range of beating periods and provide a versatile basis for a quantum information processing device on a fs time scale at room temperature.
Research Center/Unit :
MolSys - Molecular Systems - ULiège
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Collini, Elisabetta
Gattuso, Hugo ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Levine, R. D.
Remacle, Françoise ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Language :
English
Title :
Ultrafast fs coherent excitonic dynamics in CdSe quantum dots assemblies addressed and probed by 2D electronic spectroscopy
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Nanocrystal Quantum Dots, edited by V. I. Klimov (CRC Press, Boca Raton, 2010).
L. E. Brus, "Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state," J. Chem. Phys. 80 (9), 4403-4409 (1984). 10.1063/1.447218
A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science 271 (5251), 933 (1996). 10.1126/science.271.5251.933
D. J. Norris and M. G. Bawendi, "Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots," Phys. Rev. B 53 (24), 16338-16346 (1996). 10.1103/physrevb.53.16338
K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, "Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles," Proc. Natl. Acad. Sci. U. S. A. 108, 29 (2011). 10.1073/pnas.1011972107
Colloidal Quantum Dot Optoelectronics and Photovoltaics, edited by G. Konstantatos and E. Sargent (Cambridge University Press, Cambridge, 2013).
C. R. Kagan, E. Lifshitz, E. H. Sargent, and D. V. Talapin, "Building devices from colloidal quantum dots," Science 353 (6302), aac5523 (2016). 10.1126/science.aac5523
O. V. Kozlov, Y.-S. Park, J. Roh, I. Fedin, T. Nakotte, and V. I. Klimov, "Sub-single-exciton lasing using charged quantum dots coupled to a distributed feedback cavity," Science 365 (6454), 672 (2019). 10.1126/science.aax3489
Y. E. Panfil, M. Oded, and U. Banin, "Colloidal quantum nanostructures: Emerging materials for display applications," Angew. Chem. 57 (16), 4274-4295 (2018). 10.1002/anie.201708510
A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dot spins and cavity QED," Phys. Rev. Lett. 83 (20), 4204-4207 (1999). 10.1103/physrevlett.83.4204
D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots," Phys. Rev. A 57 (1), 120-126 (1998). 10.1103/physreva.57.120
B. Fresch, M. Cipolloni, T.-M. Yan, E. Collini, R. D. Levine, and F. Remacle, "Parallel and multivalued logic by the two-dimensional photon-echo response of a rhodamine-DNA complex," J. Phys. Chem. Lett. 6, 1714-1718 (2015). 10.1021/acs.jpclett.5b00514
B. Fresch, D. Hiluf, E. Collini, R. D. Levine, and F. Remacle, "Molecular decision trees realized by ultrafast electronic spectroscopy," Proc. Natl. Acad. Sci. U. S. A. 110 (43), 17183-17188 (2013). 10.1073/pnas.1314978110
K. Komarova, H. Gattuso, R. D. Levine, and F. Remacle, "Quantum device emulates the dynamics of two coupled oscillators," J. Phys. Chem. Lett. 11, 6990-6995 (2020). 10.1021/acs.jpclett.0c01880
E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, "Room-temperature exciton coherence and dephasing in two-dimensional nanostructures," Nat. Commun. 6, 6086 (2015). 10.1038/ncomms7086
E. Cassette, J. C. Dean, and G. D. Scholes, "Two-dimensional visible spectroscopy for studying colloidal semiconductor nanocrystals," Small 12 (16), 2234-2244 (2016). 10.1002/smll.201502733
D. B. Turner, Y. Hassan, and G. D. Scholes, "Exciton superposition states in CdSe nanocrystals measured using broadband two-dimensional electronic spectroscopy," Nano Lett. 12 (2), 880-886 (2012). 10.1021/nl2039502
J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, "Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy," J. Chem. Phys. 140 (8), 084701 (2014). 10.1063/1.4865832
J. R. Caram, H. Zheng, P. D. Dahlberg, B. S. Rolczynski, G. B. Griffin, A. F. Fidler, D. S. Dolzhnikov, D. V. Talapin, and G. S. Engel, "Persistent interexcitonic quantum coherence in CdSe quantum dots," J. Phys. Chem. Lett. 5 (1), 196-204 (2014). 10.1021/jz402336t
S. Palato, H. Seiler, P. Nijjar, O. Prezhdo, and P. Kambhampati, "Atomic fluctuations in electronic materials revealed by dephasing," Proc. Natl. Acad. Sci. U. S. A. 117, 11940 (2020). 10.1073/pnas.1916792117
S. Dong, D. Trivedi, S. Chakrabortty, T. Kobayashi, Y. Chan, O. V. Prezhdo, and Z.-H. Loh, "Observation of an excitonic quantum coherence in CdSe nanocrystals," Nano Lett. 15 (10), 6875-6882 (2015). 10.1021/acs.nanolett.5b02786
P. Kambhampati, "Unraveling the structure and dynamics of excitons in semiconductor quantum dots," Acc. Chem. Res. 44 (1), 1-13 (2011). 10.1021/ar1000428
T. A. Gellen, J. Lem, and D. B. Turner, "Probing homogeneous line broadening in CdSe nanocrystals using multidimensional electronic spectroscopy," Nano Lett. 17 (5), 2809-2815 (2017). 10.1021/acs.nanolett.6b05068
D. J. Trivedi, L. Wang, and O. V. Prezhdo, "Auger-mediated electron relaxation is robust to deep hole traps: Time-domain ab initio study of CdSe quantum dots," Nano Lett. 15, 2086-2091 (2015). 10.1021/nl504982k
M. Righetto, L. Bolzonello, A. Volpato, G. Amoruso, A. Panniello, E. Fanizza, M. Striccoli, and E. Collini, "Deciphering hot-and multi-exciton dynamics in core-shell QDs by 2D electronic spectroscopies," Phys. Chem. Chem. Phys. 20 (27), 18176-18183 (2018). 10.1039/c8cp02574f
H. Seiler, S. Palato, C. Sonnichsen, H. Baker, and P. Kambhampati, "Seeing multiexcitons through sample inhomogeneity: Band-edge biexciton structure in CdSe nanocrystals revealed by two-dimensional electronic spectroscopy," Nano Lett. 18 (5), 2999-3006 (2018). 10.1021/acs.nanolett.8b00470
C. Lin, K. Gong, D. F. Kelley, and A. M. Kelley, "Size-dependent exciton-phonon coupling in CdSe nanocrystals through resonance Raman excitation profile analysis," J. Phys. Chem. C 119 (13), 7491-7498 (2015). 10.1021/acs.jpcc.5b00774
O. V. Prezhdo, "Photoinduced dynamics in semiconductor quantum dots: Insights from time-domain ab initio studies," Acc. Chem. Res. 42 (12), 2005-2016 (2009). 10.1021/ar900157s
N. Lenngren, M. A. Abdellah, K. Zheng, M. J. Al-Marri, D. Zigmantas, K. Zídek, and T. Pullerits, "Hot electron and hole dynamics in thiol-capped CdSe quantum dots revealed by 2D electronic spectroscopy," Phys. Chem. Chem. Phys. 18 (37), 26199-26204 (2016). 10.1039/c6cp04190f
A. L. Efros and M. Rosen, "The electronic structure of semi-conducting nanocrystal," Annu. Rev. Mater. Sci. 30, 475-521 (2000). 10.1146/annurev.matsci.30.1.475
P. C. Sercel and A. L. Efros, "Band-edge exciton in CdSe and other II-VI and III-V compound semiconductor nanocrystals-Revisited," Nano Lett. 18 (7), 4061-4068 (2018). 10.1021/acs.nanolett.8b01980
J. Kim, C. Y. Wong, and G. D. Scholes, "Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots," Acc. Chem. Res. 42 (8), 1037-1046 (2009). 10.1021/ar8002046
C. Y. Wong and G. D. Scholes, "Using two-dimensional photon echo spectroscopy to probe the fine structure of the ground state biexciton of CdSe nanocrystals," J. Lumin. 131 (3), 366-374 (2011). 10.1016/j.jlumin.2010.09.015
H. Ma, Z. Jin, Z. Zhang, G. Li, and G. Ma, "Exciton spin relaxation in colloidal CdSe quantum dots at room temperature," J. Phys. Chem. A 116 (9), 2018-2023 (2012). 10.1021/jp2116643
V. M. Huxter, V. Kovalevskij, and G. D. Scholes, "Dynamics within the exciton fine structure of colloidal CdSe quantum dots," J. Phys. Chem. B 109 (43), 20060-20063 (2005). 10.1021/jp0546406
E. Collini, H. Gattuso, L. Bolzonello, A. Casotto, A. Volpato, C. N. Dibenedetto, E. Fanizza, M. Striccoli, and F. Remacle, "Quantum phenomena in nanomaterials: Coherent superpositions of fine structure states in CdSe nanocrystals at room temperature," J. Phys. Chem. C 123, 31286-31293 (2019). 10.1021/acs.jpcc.9b11153
E. Collini, H. Gattuso, Y. Kolodny, L. Bolzonello, A. Volpato, H. T. Fridman, S. Yochelis, M. Mor, J. Dehnel, E. Lifshitz, Y. Paltiel, R. D. Levine, and F. Remacle, "Room-temperature inter-dot coherent dynamics in multilayer quantum dot materials," J. Phys. Chem. C 124 (29), 16222-16231 (2020). 10.1021/acs.jpcc.0c05572
H. Gattuso, R. D. Levine, and F. Remacle, "Massively parallel classical logic via coherent dynamics of an ensemble of quantum systems with dispersion in size," Proc. Natl. Acad. Sci. U. S. A. 117 (35), 21022 (2020). 10.1073/pnas.2008170117
J. M. Luttinger and W. Kohn, "Motion of electrons and holes in perturbed periodic fields," Phys. Rev. 97 (4), 869-883 (1955). 10.1103/physrev.97.869
A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, "Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states," Phys. Rev. B 54 (7), 4843-4856 (1996). 10.1103/physrevb.54.4843
C. Y. Wong and G. D. Scholes, "Biexcitonic fine structure of CdSe nanocrystals probed by polarization-dependent two-dimensional photon echo spectroscopy," J. Phys. Chem. A 115 (16), 3797-3806 (2011). 10.1021/jp1079197
H. Gattuso, B. Fresch, R. D. Levine, and F. Remacle, "Coherent exciton dynamics in ensembles of size-dispersed CdSe quantum dot dimers probed via ultrafast spectroscopy: A quantum computational study," Appl. Sci. 10 (4), 1328 (2020). 10.3390/app10041328
S. Mukamel, Principle of Non-Linear Optical Spectroscopy (Oxford University Press, Oxford, 1995).
P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, Cambridge, 2011).
M. Cho, Two-Dimensional Optical Spectroscopy (CRC Press, Boca Raton, 2009).
A. M. Brańczyk, D. B. Turner, and G. D. Scholes, "Crossing disciplines-A view on two-dimensional optical spectroscopy," Ann. Phys. 526 (1-2), 31-49 (2014). 10.1002/andp.201300153
J. Jasieniak, M. Califano, and S. E. Watkins, "Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals," ACS Nano 5 (7), 5888-5902 (2011). 10.1021/nn201681s
C. Y. Wong, J. Kim, P. S. Nair, M. C. Nagy, and G. D. Scholes, "Relaxation in the exciton fine structure of semiconductor nanocrystals," J. Phys. Chem. C 113 (3), 795-811 (2009). 10.1021/jp807128j
V. I. Klimov, "Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals," J. Phys. Chem. B 104 (26), 6112-6123 (2000). 10.1021/jp9944132
C. R. Hall, J. O. Tollerud, H. M. Quiney, and J. A. Davis, "Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells," New J. Phys. 15 (4), 045028 (2013). 10.1088/1367-2630/15/4/045028
J. A. Davis, C. R. Hall, L. V. Dao, K. A. Nugent, H. M. Quiney, H. H. Tan, and C. Jagadish, "Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells," J. Chem. Phys. 135 (4), 044510 (2011). 10.1063/1.3613679
K. Hyeon-Deuk and O. V. Prezhdo, "Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots: An ab initio time-domain study," ACS Nano 6 (2), 1239-1250 (2012). 10.1021/nn2038884
J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297 (3), 307-313 (1998). 10.1016/s0009-2614(98)01140-3
The Unitary Group for the Evaluation of the Electronic Energy Matrix Elements, Lecture Notes in Chemistry Vol. 22, edited by J. Hinze (Springer-Verlag, Berlin, 1981).
Y. Alhassid and R. D. Levine, "Connection between the maximal entropy and the scattering theoretic analyses of collision processes," Phys. Rev. A 18 (1), 89-116 (1978). 10.1103/physreva.18.89
S. V. Kilina, D. S. Kilin, and O. V. Prezhdo, "Breaking the phonon bottleneck in PbSe and CdSe quantum dots: Time-domain density functional theory of charge carrier relaxation," ACS Nano 3 (1), 93-99 (2009). 10.1021/nn800674n
J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen, J. Cao, and M. G. Bawendi, "Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: Implications for exciton-phonon coupling and the optimization of spectral linewidths," Nano Lett. 16 (1), 289-296 (2016). 10.1021/acs.nanolett.5b03790
M. R. Salvador, M. W. Graham, and G. D. Scholes, "Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots," J. Chem. Phys. 125 (18), 184709 (2006). 10.1063/1.2363190
L. J. McKimmie, C. N. Lincoln, J. Jasieniak, and T. A. Smith, "Three-pulse photon echo peak shift measurements of capped CdSe quantum dots," J. Phys. Chem. C 114 (1), 82-88 (2010). 10.1021/jp9083103
L. Valkunas, D. Abramavicius, and T. Mancal, Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy (Wiley-VCH, Weinhem, 2013).
A. Volpato, L. Bolzonello, E. Meneghin, and E. Collini, "Global analysis of coherence and population dynamics in 2D electronic spectroscopy," Opt. Express 24 (21), 24773-24785 (2016). 10.1364/oe.24.024773
E. Cohen, P. Komm, N. Rosenthal-Strauss, J. Dehnel, E. Lifshitz, S. Yochelis, R. D. Levine, F. Remacle, B. Fresch, G. Marcus, and Y. Paltiel, "Fast energy transfer in CdSe quantum dot layered structures: Controlling coupling with covalent-bond organic linkers," J. Phys. Chem. C 122 (10), 5753-5758 (2018). 10.1021/acs.jpcc.7b11799
E. Cohen, I. Gdor, E. Romero, S. Yochelis, R. van Grondelle, and Y. Paltiel, "Achieving exciton delocalization in quantum dot aggregates using organic linker molecules," J. Phys. Chem. Lett. 8 (5), 1014-1018 (2017). 10.1021/acs.jpclett.6b02980
E. Cohen, M. Gruber, E. Romero, S. Yochelis, R. van Grondelle, and Y. Paltiel, "Properties of self-assembled hybrid organic molecule/quantum dot multilayered structures," J. Phys. Chem. C 118 (44), 25725-25730 (2014). 10.1021/jp507825r
L. Bolzonello, A. Volpato, E. Meneghin, and E. Collini, "Versatile setup for high-quality rephasing, non-rephasing, and double quantum 2D electronic spectroscopy," J. Opt. Soc. Am. B 34 (6), 1223-1233 (2017). 10.1364/josab.34.001223
Y. Kobayashi, C.-H. Chuang, C. Burda, and G. D. Scholes, "Exploring ultrafast electronic processes of quasi-type II nanocrystals by two-dimensional electronic spectroscopy," J. Phys. Chem. C 118 (29), 16255-16263 (2014). 10.1021/jp504559s
G. B. Griffin, S. Ithurria, D. S. Dolzhnikov, A. Linkin, D. V. Talapin, and G. S. Engel, "Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power," J. Chem. Phys. 138 (1), 014705 (2013). 10.1063/1.4772465
K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, "Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells," Science 324 (5931), 1169 (2009). 10.1126/science.1170274
D. B. Turner and K. A. Nelson, "Coherent measurements of high-order electronic correlations in quantum wells," Nat 466 (7310), 1089-1092 (2010). 10.1038/nature09286
K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, and G. Moody, "Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2," Nano Lett. 16 (8), 5109-5113 (2016). 10.1021/acs.nanolett.6b02041
A. E. Böhmer, F. Hardy, F. Eilers, D. Ernst, P. Adelmann, P. Schweiss, T. Wolf, and C. Meingast, "Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe," Phys. Rev. B 87 (18), 180505 (2013). 10.1103/physrevb.87.180505
A. Volpato and E. Collini, "Time-frequency methods for coherent spectroscopy," Opt. Express 23 (15), 20040-20050 (2015). 10.1364/oe.23.020040
A. Volpato and E. Collini, "Optimization and selection of time-frequency transforms for wave-packet analysis in ultrafast spectroscopy," Opt. Express 27 (3), 2975-2987 (2019). 10.1364/oe.27.002975
E. Romero, J. Prior, A. W. Chin, S. E. Morgan, V. I. Novoderezhkin, M. B. Plenio, and R. van Grondelle, "Quantum-coherent dynamics in photosynthetic charge separation revealed by wavelet analysis," Sci. Rep. 7 (1), 2890 (2017). 10.1038/s41598-017-02906-7
E. Meneghin, A. Volpato, L. Cupellini, L. Bolzonello, S. Jurinovich, V. Mascoli, D. Carbonera, B. Mennucci, and E. Collini, "Coherence in carotenoid-to-chlorophyll energy transfer," Nat. Commun. 9 (1), 3160 (2018). 10.1038/s41467-018-05596-5
J. D. Gaynor, J. Sandwisch, and M. Khalil, "Vibronic coherence evolution in multidimensional ultrafast photochemical processes," Nat. Commun. 10 (1), 5621 (2019). 10.1038/s41467-019-13503-9
Q. Shie and C. Dapang, "Joint time-frequency analysis," IEEE Signal Process. Mag. 16 (2), 52-67 (1999). 10.1109/79.752051
K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001).
P. Kambhampati, "Hot exciton relaxation dynamics in semiconductor quantum dots: Radiationless transitions on the nanoscale," J. Phys. Chem. C 115 (45), 22089-22109 (2011). 10.1021/jp2058673
A. M. Kelley, "Electron-phonon coupling in CdSe nanocrystals," J. Phys. Chem. Lett. 1 (9), 1296-1300 (2010). 10.1021/jz100123b
A. Liu, D. B. Almeida, W. K. Bae, L. A. Padilha, and S. T. Cundiff, "Non-markovian exciton-phonon interactions in core-shell colloidal quantum dots at femtosecond timescales," Phys. Rev. Lett. 123 (5), 057403 (2019). 10.1103/physrevlett.123.057403
A. M. Kelley, "Exciton-optical phonon coupling in II-VI semiconductor nanocrystals," J. Chem. Phys. 151 (14), 140901 (2019). 10.1063/1.5125147
S. Pal, D. J. Trivedi, A. V. Akimov, B. Aradi, T. Frauenheim, and O. V. Prezhdo, "Nonadiabatic molecular dynamics for thousand atom systems: A tight-binding approach toward PYXAID," J. Chem. Theory Comput. 12 (4), 1436-1448 (2016). 10.1021/acs.jctc.5b01231
J. Seibt and T. Pullerits, "Beating signals in 2D spectroscopy: Electronic or nuclear coherences? Application to a quantum dot model system," J. Phys. Chem. C 117 (36), 18728-18737 (2013). 10.1021/jp406103m
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.