[en] Origins of ancient rockslides in seismic regions can be controversial and must not necessarily be seismic. Certain slope morphologies hint at a possible co-seismic development, though further analyses are required to better comprehend their failure history, such as modelling the slope in its pre-failure state and failure development in static and dynamic conditions. To this effect, a geophysical characterisation of the landslide body is crucial to estimate the possible failure history of the slope. The Balta rockslide analysed in this paper is located in the seismic region of Vrancea-Buzau, Romanian Carpathian Mountains, and presents a deep detachment scarp as well as a massive body of landslide deposits. We applied several geophysical techniques on the landslide body, as well as on the mountain crest above the detachment scarp, in order to characterise the fractured rock material as well as the dimension of failure. Electrical resistivity measurements revealed a possible trend of increasing fragmentation of rockslide material towards the valley bottom, accompanied by increasing soil moisture. Several seismic refraction surveys were performed on the deposits and analysed in form of P-wave refraction tomographies as well as surface waves, allowing to quantify elastic parameters of rock. In addition, a seismic array was installed close to the detachment scarp to analyse the surface wave dispersion properties from seismic ambient noise; the latter was analysed together with a co-located active surface wave analysis survey. Single-station ambient noise measurements completed all over the slope and deposits were used to further reveal impedance contrasts of the fragmented material over in-situ rock, representing an important parameter to estimate the depth of the shearing horizon at several locations of the study area. The combined methods allowed the detection of a profound contrast of 70-90 m, supposedly associated with the maximum landslide material thickness. The entirety of geophysical results was used as basis to build up a geomodel of the rockslide, allowing to estimate the geometry and volume of the failed mass, i.e., approximately 28.5-33.5 million m3.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Mreyen, Anne-Sophie ; Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Cauchie, Léna ; Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Micu, Mihai
Onaca, Alexandru
Havenith, Hans-Balder ; Université de Liège - ULiège > Département de géologie > Géologie de l'environnement
Language :
English
Title :
Multiple geophysical investigations to characterise massive slope failure deposits: application to the Balta rockslide, Carpathians
Publication date :
21 January 2021
Journal title :
Geophysical Journal International
ISSN :
0956-540X
Publisher :
Geological Society by Blackwell Scientific, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture F.R.S.-FNRS - Fonds de la Recherche Scientifique
Cody, E., Draebing, D., McColl, S., Cook, S. & Brideau, M.-A., 2020. Geomorphology and geological controls of an active paraglacial rockslide in the New Zealand Southern Alps, Landslides, 17, 755-776.
Crosta, G., Frattini, P. & Agliardi, F., 2013. Deep seated gravitational slope deformations in the European Alps, Tectonophysics, 605, 13-33.
Crozier, M., Deimel, M. & Simon, J., 1995. Investigation of earthquake triggering for deep-seated landslides, Taranaki, New Zealand, Quater. Int., 25, 65-73.
Crozier, M.J., 1999. Prediction of rainfall-triggered landslides: a test of the antecedent water status model, Earth Surf. Process. Landforms, 24(9), 825-833.
Dahlin, T. & Zhou, B., 2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays, Geophys. Prospect., 52(5), 379-398.
Damen, M., Micu, M., Zumpano, V., Van Westen, C., Sijmons, K. & Bal-teanu, D., 2014. Landslide mapping and interpretation: implications for landslide susceptibility analysis in discontinuous data environment, in Proceedings of the International Conference Analysis and Management of Changing Risks for Natural Hazards, 18-19 November 2014, Padua, Italy, pp. 177-186.
Danneels, G., Bourdeau, C., Torgoev, I. & Havenith, H.-B., 2008. Geophysical investigation and dynamic modelling of unstable slopes: case-study of Kainama (Kyrgyzstan), J. geophys. Int., 175(1), 17-34.
deGroot Hedlin, C. & Constable, S., 1990. Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 55(12), 1613-1624.
Del Gaudio, V., Wasowski, J. & Muscillo, S., 2013. New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes, Nat. Hazards Earth Syst. Sci., 13(8), 2075.
Dragotǎ, C.S., 2006, Precipitątiile excedentare in România, Academiei Române, Bucureşti, pp. 53-57.
Dunkin, J.W., 1965. Computationofmodal solutions in layered, elastic media at high frequencies, Bull. seism. Soc. Am., 55(2), 335-358.
Earle, P.S. & Shearer, P.M., 1994. Characterization of global seismograms using an automatic-picking algorithm, Bull. seism. Soc. Am., 84(2), 366-376.
Fan, X., Yunus, A.P., Jansen, J.D., Dai, L., Strom, A. & Xu, Q., 2019. Comment on 'Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau' by Zhao et al. (2019) geomorphology 338, 27-42, Geomorphology, in press, doi:10.1016/j.geomorph.2019.106963.
Farquharson, C.G. & Oldenburg, D.W., 2004. A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems, J. geophys. Int., 156(3), 411-425.
Foti, S. et al., 2018. Guidelines for the good practiceofsurface wave analysis: a product of the interPACIFIC project, Bull. Earthq. Eng., 16(6), 2367-2420.
Gance, J., Malet, J.-P., Supper, R., Sailhac, P., Ottowitz, D. & Jochum, B., 2016. Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides, J. appl. Geophys., 126, 98-115.
Georgescu, E., 2002. The partial collapse of Coltzea Tower during the Vrancea earthquake of 14/26 October 1802: the historical warning of long-period ground motions site effects in Bucharest, in International Conference Earthquake Loss Estimation and Risk Reduction, October 24-26, 2002, Bucharest, Romania.
Georgescu, E.-S. & Pomonis, A., 2012. Building damage vs. territorial casualty patterns during the Vrancea (Romania) earthquakes of 1940 and 1977, in 15th World Conference on Earthquake Engineering, 24-28 September, Lisbon, Portugal, pp. 12504-12514.
Gercek, H., 2007. Poisson's ratio values for rocks, Int. J. Rock Mech. Min. Sci., 44(1), 1-13.
Godio, A. & Bottino, G., 2001. Electrical and electromagnetic investigation for landslide characterisation, Phys. Chem. Earth, Part C., 26(9), 705-710.
Göktürkler, G., Balkaya, Ç. & Erhan, Z., 2008. Geophysical investigation of a landslide: the Altindaǧ landslide site, Izmir (western Turkey), J. appl. Geophys., 65(2), 84-96.
Grandjean, G., Malet, J.-P., Bitri, A. & Méric, O., 2007. Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides, Bulletin de la société géologique de France, 178(2), 127-136.
Gregory, A., 1976. Fluid saturation effects on dynamic elastic properties of sedimentary rocks, Geophysics, 41(5), 895-921.
Harba, P., Pilecki, Z. & Krawiec, K., 2019. Comparison of MASW and seismic interferometry with use of ambient noise for estimation of S-wave velocity field in landslide subsurface, Acta Geophysica, 67, 1875-1883.
Havenith, H.-B., Fäh, D., Polom, U. & Roullé, A., 2007. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben, J. geophys. Int., 170(1), 346-358.
Havenith, H.-B., Strom, A., Torgoev, I., Torgoev, A., Lamair, L., Ischuk, A. & Abdrakhmatov, K., 2015. Tien Shan geohazards database: earthquakes and landslides, Geomorphology, 249, 16-31.
Havenith, H.-B., Torgoev, I. & Ischuk, A., 2018. Integrated geophysical-geological 3D model of the right-bank slope downstream from the Rogun dam construction site, Tajikistan, Int. J. Geophys., 2018.
Heincke, B., Maurer, H., Green, A.G., Willenberg, H., Spillmann, T. & Burlini, L., 2006. Characterizing an unstable mountain slope using shallow 2D and 3D seismic tomography-seismic survey of an unstable mountain, Geophysics, 71(6), B241-B256.
Hibert, C., Grandjean, G., Bitri, A., Travelletti, J. & Malet, J.-P., 2012. Characterizing landslides through geophysical data fusion: example of the La Valette landslide (France), Eng. Geol., 128, 23-29.
Horowitz, F.G., Hornby, P., Bone, D. & Craig, M., 1996. Fast multidimensional interpolations, in 26th Proceedings of the Applications of Computers and Operations Research in the Minerals Industry, Soc. for Mining, Metallurgy and Exploration Inc., pp. 53-56.
Hungr, O. & Evans, S., 2004. Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism, Bull. geol. Soc. Am., 116(9-10), 1240-1252.
Hungr, O., Leroueil, S. & Picarelli, L., 2014. The Varnes classification of landslide types, an update, Landslides, 11(2), 167-194.
Hussain, Y., Cardenas-Soto, M., Uagoda, R., Martino, S., Sanchez, N.P., Moreira, C.A. & Martinez-Carvajal, H., 2019. Shear wave velocity estimation by a joint inversion of HVSR and fk curves under diffuse field assumption: a case study of Sobradinho landslide, Anuário do Instituto de Geociências, 42(1), 742-750.
Ibs-von Seht, M. & Wohlenberg, J., 1999. Microtremor measurements used to map thickness of soft sediments, Bull. seism. Soc. Am., 89(1), 250-259.
IGR, 1968. Harta geologica 1:200000, Covasna sheet, Institutul Geologic al Romaniei.
Imposa, S., Grassi, S., Fazio, F., Rannisi, G. & Cino, P., 2017. Geophysical surveys to study a landslide body (north-eastern Sicily), Nat. Hazards, 86(2), 327-343.
Jaboyedoff, M., Chigira, M., Arai, N., Derron, M.-H., Rudaz, B. & Tsou, C.-Y., 2019. Testing a failure surface prediction and deposit reconstruction method for a landslide cluster that occurred during Typhoon Talas (Japan), Earth Surf. Dyn., 7(2), 439-458.
Jongmans, D. & Garambois, S., 2007. Geophysical investigation of landslides: a review, Bulletin de la Société géologique de France, 178(2), 101-112.
Jongmans, D., Bièvre, G., Renalier, F., Schwartz, S., Beaurez, N. & Orengo, Y., 2009. Geophysical investigation of a large landslide in glaciolacus-trine clays in the Trièves area (French Alps), Eng. Geol., 109(1-2), 45-56.
Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Sdao, F. & Rizzo, E., 2003. High-resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy), Bull. Eng. Geol. Environ., 62(3), 259-268.
Lay, T. & Wallace, T.C., 1995. Modern Global Seismology, Academic Press.
Lemaire, E., Mreyen, A.-S., Dufresne, A. & Havenith, H.-B., 2020. Analysis of the influence of structural geology on the massive seismic slope failure potential supported by numerical modelling, Geosciences, 10(8), 323.
Loke, M., 1998. RES2DINV version 3.3: rapid 2D resistivity and IP inversion using the least-squares method, Computer Disk and Manual, Penang, Malaysia.
Loke, M., 2004.Tutorial: 2-D and 3-D Electrical Imaging Surveys, Available at: www.geoelectrical.com.
Loke, M. & Barker, R., 1996. Practical techniques for 3D resistivity surveys and data inversion 1, Geophys. Prospect., 44(3), 499-523.
Luo, Y., Xia, J., Xu, Y. & Zeng, C., 2011. Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications, J. Appl. Geophy., 74(2-3), 157-165.
Mândrescu, N., 1981. The Romanian earthquakeof march4, 1977; aspects of soil behaviour, Revue roumaine de géologie, géophysique et géographie. G éophysique, 25, 35-56.
Meric, O., Garambois, S., Jongmans, D., Wathelet, M., Chatelain, J.-L. & Vengeon, J., 2005. Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France, Can. Geotech. J., 42(4), 1105-1115.
Méric, O., Garambois, S., Malet, J.-P., Cadet, H., Gueguen, P. & Jongmans, D., 2007. Seismic noise-based methods for soft-rock landslide characterization, Bulletin de la Societe Geologique de France, 178(2), 137-148.
Meunier, P., Hovius, N. & Haines, J.A., 2008. Topographic site effects and the location of earthquake induced landslides, Earth planet. Sci. Lett., 275(3-4), 221-232.
Micu, M., Bǎlteanu, D., Micu, D., Zarea, R. & Raluca, R., 2013. Landslides in the Romanian Curvature Carpathians in 2010, in Geomorphological Impacts of Extreme Weather, pp. 251-264, Springer.
Ministry of Environment B., 2018. Raport anual privind Starea Mediului in Romania pe anul 2018, Ministerul Mediului Bucuresti, 1-678, http://www.anpm.ro/raport-de-mediu.
Mreyen, A.-S., Micu, M., Onaca, A., Cerfontaine, P. & Havenith, H.-B., 2017. Integrated geological-geophysical models of unstable slopes in seismic areas, in Workshop on World Landslide Forum, pp. 269-279, Springer.
Nakamura, Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Railway Tech. Res. Inst., Quart. Rep., 30(1).
Panek, T., Hradecky, J. & Šilhán, K., 2008. Application of electrical resistivity tomography (ERT) in the study of various types of slope deformations in anisotropic bedrock: case studies from the Flysch Carpathians, Studia Geomorphologica Carpatho-Balcanica, 42, 57-73.
Park, C.B., Miller, R.D. & Xia, J., 1999. Multichannel analysis of surface waves, Geophysics, 64(3), 800-808.
Pazzi, V., Tanteri, L., Bicocchi, G., D'Ambrosio, M., Caselli, A. & Fanti, R., 2017. H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy), Phys. Chem. Earth, Parts A/B/C, 98, 136-153.
Pazzi, V., Morelli, S. & Fanti, R., 2019. A review of the advantages and limitations of geophysical investigations in landslide studies, Int. J. Geophys., 2019, doi:10.1155/2019/2983087
Perrone, A., Lapenna, V. & Piscitelli, S., 2014. Electrical resistivity tomography technique for landslide investigation: a review, Earth-Sci. Rev., 135, 65-82.
Powell, M.J., 1992. The theory of radial basis function approximation in 1990, Adv. Numer. Anal., II, 105-210.
Radu, C. & Spânoche, E., 1977. On geological phenomena associated with the 10 november 1940 earthquake, Revenue Romanian Geology Geophysics et Geographic.-Geophysique, 21, 159-165.
Radulescu, N.A., 1941. Considérations géographiques sur le tremblement de terre du 10 november 1940, Comptes Rendus de Séances de LAcadémie des Sciences de Roumanie, 5(3), 243-269.
Renalier, F., Jongmans, D., Campillo, M. & Bard, P.-Y., 2010. Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation, J. geophys. Res., 115(F3), doi:10.1029/2009JF001538.
Rezaei, S., Shooshpasha, I. & Rezaei, H., 2020. Evaluation of landslides using ambient noise measurements (case study: Nargeschal landslide), Int. J. Geotech. Eng., 14(4), 409-419.
Rogozea, M., Marmureanu, G., Radulian, M. & Toma, D., 2014. Reevalu-ation of the macroseismic effects of the 23 January 1838 Vrancea earthquake, Rom. Rep. Phys., 66(2), 520-538.
Rost, S. & Thomas, C., 2002. Array seismology: methods and applications, Rev. Geophys., 40(3), 2-1.
Shoaei, Z., 2014. Mechanism of the giant Seimareh Landslide, Iran, and the longevity of its landslide dams, Environ. Earth Sci., 72(7), 2411-2422.
Strom, A., 2010. Landslide dams in Central Asia region, J. Jpn. Landslide Soc., 47(6), 309-324.
Strom, A. & Abdrakhmatov, K., 2018. Rockslides and Rock Avalanches of Central Asia: Distribution, Morphology, and Internal Structure, Elsevier.
Thiery, Y., Reninger, P.-A., Lacquement, F., Raingeard, A., Lombard, M. & Nachbaur, A., 2017. Analysis of slope sensitivity to landslides by a transdisciplinary approach in the framework of future development: the case of la Trinité in Martinique (French West Indies), Geosciences, 7(4), 135.
Uhlemann, S., Hagedorn, S., Dashwood, B., Maurer, H., Gunn, D., Dijkstra, T. & Chambers, J., 2016. Landslide characterization using P-and S-wave seismic refraction tomography-the importance of elastic moduli, J. appl. Geophys., 134, 64-76.
USGS, 2020. U.S. Geological Survey-Earthquake Hazards Event Page. Available at: https://www.usgs.gov/natural-hazards/earthquake-hazards/earthquakes (accessed 2 September 2020).
Vacareanu, R. & Ionescu, C., 2016, The 1940 Vrancea Earthquake. Issues, insights and lessons learnt, in Proceedings of the Symposium Commemorating 75 Years from November 10, 1940 Vrancea Earthquake, Springer.
Wathelet, M., 2008. An improved neighborhood algorithm: parameter conditions and dynamic scaling, Geophys. Res. Lett., 35(9), doi:10.1029/2008GL033256.
Wathelet, M., Jongmans, D. & Ohrnberger, M., 2004. Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements, Near Surf. Geophys., 2(4), 211-221.
Wathelet, M., Jongmans, D., Ohrnberger, M. & Bonnefoy-Claudet, S., 2008. Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion, J. Seismol., 12(1), 1-19.
Whiteley, J. et al., 2020. Landslide monitoring using seismic refraction tomography-the importance of incorporating topographic variations, Eng. Geol., 268, doi:10.1016/j.enggeo.2020.105525.
Xia, J., Miller, R.D. & Park, C.B., 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 64(3), 691-700.