gravitational lensing: strong; methods: numerical; Galaxy: fundamental parameters; Galaxy: structure; Astrophysics - Astrophysics of Galaxies
Abstract :
[en] In the coming years, strong gravitational lens discoveries are expected to increase in frequency by two orders of magnitude. Lens-modelling techniques are being developed to prepare for the coming massive influx of new lens data, and blind tests of lens reconstruction with simulated data are needed for validation. In this paper, we present a systematic blind study of a sample of 15 simulated strong gravitational lenses from the EAGLE suite of hydrodynamic simulations. We model these lenses with a free-form technique and evaluate reconstructed mass distributions using criteria based on shape, orientation, and lensed image reconstruction. Especially useful is a lensing analogue of the Roche potential in binary star systems, which we call the lensing Roche potential. This we introduce in order to factor out the well-known problem of steepness or mass-sheet degeneracy. Einstein radii are on average well recovered with a relative error of ∼ 5 per cent for quads and ∼ 25 per cent for doubles; the position angle of ellipticity is on average also reproduced well up to ±10°, but the reconstructed mass maps tend to be too round and too shallow. It is also easy to reproduce the lensed images, but optimizing on this criterion does not guarantee better reconstruction of the mass distribution.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Denzel, Philipp; Institute for Computational Science, University of Zurich, CH-8057 Zurich, Switzerland ; Physics Institute, University of Zurich, CH-8057 Zurich, Switzerland
Mukherjee, Sampath ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Coles, Jonathan P.; Physik-Department, Technische Universität München, James-Franck-Str. 1, D-85748 Garching, Germany
Saha, Prasenjit; Institute for Computational Science, University of Zurich, CH-8057 Zurich, Switzerland ; Physics Institute, University of Zurich, CH-8057 Zurich, Switzerland)
Language :
English
Title :
Lessons from a blind study of simulated lenses: image reconstructions do not always reproduce true convergence
Coles J. P., Read J. I., Saha P., 2014, MNRAS, 445, 2181
Courbin F., Saha P., Schechter P. L., 2002, Quasar Lensing. Springer, Berlin, Heidelberg, p. 1
Crain R. A. et al., 2015, MNRAS, 450, 1937
Dye S., Warren S. J., 2005, ApJ, 623, 31
Furlong M. et al., 2015, MNRAS, 450, 4486
Furlong M. et al., 2017, MNRAS, 465, 722
Hezaveh Y. D., Levasseur L. P., Marshall P. J., 2017, Nature, 548, 555
Hutsemékers D., Braibant L., Sluse D., Goosmann R., 2019, A&A, 629, A43
Jacobs C., Glazebrook K., Collett T., More A., McCarthy C., 2017, MNRAS, 471, 167
Jones E., Oliphant T., Peterson P. et al., 2001, SciPy: Open source scientific tools for Python. Available at: Http://www.scipy.org/(accessed 2020 January 24)
Koopmans L. V. E. et al., 2009, ApJ, 703, L51
Koopmans L. V. E., Treu T., 2003, ApJ, 583, 606
Koopmans L. V. E., Treu T., Bolton A. S., Burles S., Moustakas L. A., 2006, ApJ, 649, 599
Küng R. et al., 2015, MNRAS, 447, 2170
Küng R. et al., 2018, MNRAS, 474, 3700
Küng R., 2018, Astron. Comput., 23, 115
Lanusse F., Ma Q., Li N., Collett T. E., Li C.-L., Ravanbakhsh S., Mandelbaum R., Poczos B., 2017, MNRAS, 473, 3895
Leier D., Ferreras I., Saha P., Falco E. E., 2011, ApJ, 740, 97
Leier D., Ferreras I., Saha P., Charlot S., Bruzual G., La Barbera F., 2016, MNRAS, 459, 3677
Lubini M., Coles J., 2012, MNRAS, 425, 3077
Marshall P. J. et al., 2016, MNRAS, 455, 1171
McAlpine S. et al., 2016, Astron. Comput., 15, 72
Meneghetti M. et al., 2017, MNRAS, 472, 3177
Metcalf R. B., Petkova M., 2014, MNRAS, 445, 1942
More A. et al., 2016, MNRAS, 455, 1191
Mukherjee S. et al., 2018, MNRAS, 479, 4108
Mukherjee S., Koopmans L. V. E., Metcalf R. B., Tortora C., Schaller M., Schaye J., Vernardos G., Bellagamba F., 2019, MNRAS, preprint (astro-ph/1901.01095)
Newton E. R., Marshall P. J., Treu T., Auger M. W., Gavazzi R., Bolton A. S., Koopmans L. V. E., Moustakas L. A., 2011, ApJ, 734, 104
Nierenberg A. M. et al., 2017, MNRAS, 471, 2224
Nightingale J. W., Dye S., Massey R. J., 2018, MNRAS, 478, 4738
Oguri M., Marshall P. J., 2010, MNRAS, 405, 2579
Paraficz D., Hjorth J., 2010, ApJ, 712, 1378
Petkova M., Metcalf R. B., Giocoli C., 2014, MNRAS, 445, 1954
Read J. I., Saha P., Macciò A. V., 2007, ApJ, 667, 645
Saha P., 2000, AJ, 120, 1654
Saha P., Williams L. L. R., 1997, MNRAS, 292, 148
Saha P., Williams L. L. R., 2004, AJ, 127, 2604
Saha P., Williams L. L. R., 2006, ApJ, 653, 936
Schaller M. et al., 2015, MNRAS, 451, 1247
Schaye J. et al., 2010, MNRAS, 402, 1536
Schaye J. et al., 2014, MNRAS, 446, 521
Schneider P., Sluse D., 2014, A&A, 564, A103
Sereno M., Paraficz D., 2014, MNRAS, 437, 600
Sluse D., Hutsemékers D., Courbin F., Meylan G., Wambsganss J., 2012, A&A, 544, A62
Suyu S. H. et al., 2017, MNRAS, 468, 2590
Suyu S. H., Halkola A., 2010, A&A, 524, A94
Suyu S. H., Marshall P. J., Hobson M. P., Blandford R. D., 2006, MNRAS, 371, 983