Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection
Schmitz, M.; Douxfils, J.; Mandiki, S. N. M.et al.
2016 • In Fish and Shellfish Immunology, 55, p. 550-558
Schmitz, M.; University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
Douxfils, J.; University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
Mandiki, S. N. M.; University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
Morana, Cédric ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Baekelandt, S.; University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
Kestemont, P.; University of Namur, Research Unit in Environmental and Evolutionary Biology, Namur, Belgium
Language :
English
Title :
Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection
Publication date :
2016
Journal title :
Fish and Shellfish Immunology
ISSN :
1050-4648
eISSN :
1095-9947
Publisher :
Academic Press
Volume :
55
Pages :
550-558
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
[1] FAO – Food and Agriculture Organization of the United Nations, The State of World Fisheries and Aquaculture. 2014, Food and Agriculture Organization of the United Nations, Rome.
[2] Vietnam Association of Seafood Exporters and Producers (VASEP), Pangasius Export Statistics. 2015, VASEP, Vietnam.
[3] SIWRR (the Southern Institute of Water Resource Research)., 2016 http://www.tongcucthuyloi.gov.vn/ (accessed 24.03.16).
[4] Cuesta, A., Laiz-Carrion, R., Martin del Rio, M., Meseguer, J., Mancera, J., Esteban, M., The salinity influences humoral immune parameters of gilthead seabream (Sparus aurata). Fish. Shellfish Immun. 18 (2005), 255–261.
[6] Yada, T., Azuma, T., Takaji, Y., Stimulation of non-specific immune functions in seawater-acclimated rainbow trout Oncorhynchus mykiss, with reference to the role of growth hormone. Comp. Biochem. Phys. B 129 (2001), 695–701.
[7] Chou, H.Y., Peng, T.Y., Chang, S.J., Hsu, Y.L., Wu, J.L., Effect of heavy metal stressors and salinity shock on the susceptibility of grouper (Epinephelus sp.) to infectious pancreatic necrosis virus. Virus Res. 63 (1999), 121–129.
[8] Delamare-Deboutteville, J., Wood, D., Barnes, A.C., Response and function of cutaneous mucosal and serum antibodies in barramundi (Lates calcarifer) acclimated in seawater and freshwater. Fish. Shellfish Immun. 21 (2006), 92–101.
[9] Abraham, E., Arcaroli, J., Carmody, A., Wang, H., Tracey, K.J., HMG-1 as a mediator of acute lung inflammation. J. Immunol. 165 (2000), 2950–2954.
[10] Roberts, R.J., Agius, C., Saliba, C., Bossier, P., Sung, Y.Y., Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J. Fish. Dis. 33 (2010), 789–801.
[11] Tang, D., Kang, R., Zeh, H.J., Lotze, M.T., High-mobility group box 1, oxidative stress,and disease. Antioxid. Redox. Sign. 14 (2011), 11315–11335.
[12] Mayer, M.P., Bukau, B., Hsp 70 chaperones: cellular function and molecular mechanism. Cell. Mol. Life Sci. 62 (2005), 670–684.
[13] Wang, H., Liao, H., Ochani, M., Justiniani, M., Lin, X., Yang, L., Al-Abed, Y., Wang, H., Metz, E.J., Tracey, K.J., Ukkoa, L., Cholinergic agonists inhibiti HMGB1 release and improve survival in experimental sepsis. Nat. Med. 10 (2004), 1216–1221.
[14] Norouzitallab, P., Kartik, B., Muthappa, D.M., Bossier, P., Non lethal heat shock induces HSP70 and HMGB1 protein production sequentially to protect Artemia franciscana against Vibrio campbelii. Fish. Shellfish Immun. 42 (2015), 395–399.
[15] Baruah, K., Norouzitallab, P., Linayati, L., Sorgeloos, P., Bossier, P., Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios. Dev. Comp. Immunol. 46 (2014), 470–479.
[16] Chase, M.A., Wheeler, D.S., Lierl, K.M., Hughes, V.S., Wong, H.R., Page, K., Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4 and NF kappa B dependent mechanism. J. Immunol. 170 (2007), 6318–6324.
[17] Zhao, L., Hu, Y., Sun, J., Sun, L., The high mobility group box 1 protein of Sciaenops ocellatus is a secreted cytokine that stimulates macrophage activation. Dev. Comp. Immunol. 35 (2011), 1052–1058.
[18] Xie, J., Hodgkinson, J.W., Kovacevic, N., Belosevic, M., Identification and functional characterization of the goldfish (Carassius auratus L.) high mobility group box 1 (HMGB1) chromatin binding protein. Dev. Comp. Immunol. 44 (2014), 245–253.
[19] Chen, G.Y., Nunez, G., Sterile inflammation: sensing and reacting to damage. Nat. Rev. 10 (2010), 826–837.
[20] Hawke, J.-P., McWhorther, A.C., Steigerwalt, A.G., Brenner, D.J., Edwardsiella ictaluri sp. nov., the causative agent of enteric septicaemia of catfish. Int. J. Syst. Bacteriol. 31 (1981), 396–400.
[21] Mc Cormick, S.D., Methods for nonlethal gill biopsy and measurement of NaK-ATPase activity. Can. J. Fish. Aquat. Sci. 50 (1993), 656–658.
[22](a) Inoue, T., Moritomo, T., Tamura, Y., Mamiya, S., Fujino, H., Nakanishi, T., A new method for fish leucocyte counting and partial differentiation by flow cytometry. Fish. Shellfish Immun. 13 (2002), 379–390.
[22](b) Pierrard, M.-A., Roland, K., Kestemont, P., Dieu, M., Raes, M., Silvestre, F., Fish peripheral blood mononuclear cells preparation for future monitoring applications. Anal. Biochem. 426 (2012), 153–165.
[23] Vázquez, G.R., Guerrero, G.A., Characterization of blood cells and hematological parameters in Cichlasoma dimerus (Teleostei, Perciformes). Tissue Cell 39 (2007), 151–160.
[24] Ellis, A.E., Lysozyme activity. Stolen, T.C., Fletcher, P.D., Anderson, B.S., Roberson, B.S., Muiswinkel, W.B., (eds.) Technique in Fish Immunology, 1990, SOS Publications, New York, 101–103.
[25] Sunyer, J.O., Tort, L., Natural haemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Veterinary Immunol. Immunop. 45 (1995), 333–345.
[26] Rook, G.A.W., Steele, J., Umar, S., Dockrell, H.M., A simple method for the solubilisation of reduced NBT and its use as a colorimetric assay for activation of human macrophages by δ-interferon. J. Immunol. Methods 82 (1985), 161–167.
[27] Eckert, S.M., Yada, T., Shepherd, B.S., Stetson, M., Hirano, T., Grau, E.G., Hormonal freshwater of osmoregulation in the channel catfish Ictalurus punctatus. Gen. Comp. Endocr 122 (2001), 270–286.
[28] Phuc, T.H.N., Huong, D.T.T., Mather, P.B., Hurwood, D.A., Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus). Fish. Physiol. Biochem. 40 (2014), 1839–1848.
[29] Norton, V., Davis, K., Effect of abrupt change in the salinity of the environmental on plasma electrolytes, urine, volume, volume and electrolytic excretion in channel catfish, Ictalurus punctatus. Comp. Biochem. Phys. 56A (1977), 425–431.
[30] Yuasa, K., Kholidin, E.B., Panigoro, N., Hatai, K., First isolation of Edwardsiella ictaluri from cultured striped catfish Pangasius hypophthalmus in Indonesia. Fish. Pathol. 38 (2003), 181–183.
[31] Shigen, Y., Hua, L., Guo, Q., Zhongshi, L., First case of Edwardsiella ictaluri infection in China farmed yellow catfish Pelteobagrus fulvidraco. Aquaculture 292 (2009), 6–10.
[32] Lefevre, S., Huong, D.T.T., Wang, T., Phuong, N.T., Bayley, M., Hypoxia tolerance and partitioning of bimodal respiration in the striped catfish (Pangasianodon hypophthalmus). Comp. Biochem. Phys. A 158 (2011), 207–214.
[33] Lefevre, S., Huong, D.T.T., Ha, N.T.K., Wang, T., Phuong, N.T., Bayley, M., A telemetry study of swimming depth and oxygen level in a Pangasius pond in the Mekong Delta. Aquaculture 315 (2011), 410–413.
[34] Fink, I., Ribeiro, C., Forlenza, M., Taverne-Thiele, A., Rombout, J., Savelkoul, H., Wiegertjes, G., Immune relevant thrombocytes of common carp undergo parasite induced nitric oxide-mediated apoptosis. Dev. Comp. Immunol. 50 (2015), 146–154.
[35] Köllner, B., Fisher, U., Rombout, J.H., Taverne-Thiele, J.J., Hansen, J.D., Potential involvement of rainbow trout thrombocytes in immune functions: a study using a panel of monoclonal antibodies and RT-PCR. Dev. Comp. Immunol. 28 (2004), 1049–1062.
[36] Nagasawa, T., Nagayasu, C., Rieger, A., Barreda, D., Somamoto, T., Nakao, M., Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Front. Immunol. 5 (2014), 1–11.
[37] Sirimanapong, W., Thompson, K., Kledmanee, K., Thaijongrak, P., Collet, B., Adams, A., Optimisation and standardisation of functional immune assays for striped catfish (Pangasianodon hypophthalmus) to compare their immune response to live and heat killed Aeromonas hydrophila as models of infection and vaccination. Fish. Shellfish Immun. 40 (2014), 374–383.
[38] Marc, A.M., Quentel, C., Severe, A., Le Bail, P.Y., Boeuf, G., Changes in some endocrinological and non-specific immunological parameters during seawater exposure in the brown trout. J. Fish. Biol. 46 (1995), 1065–1081.
[39] Dominguez, M., Takeruma, A., Tsuchiya, M., Effects of changes in environmental factors on the non-specific immune response of Nile tilapia, Oreochromis niloticus L. Aquac. Res. 36 (2005), 391–397.
[40] Hang, D.T.T., Milla, S., Gillardin, V., Phuong, N., Kestemont, P., In vivo effects of Escherichia coli lipopolysaccharide on regulation of immune response and protein expression in striped catfish (Pangasianodon hypophthalmus). Fish. Shellfish Immun. 34 (2013), 339–347.
[41] Milla, S., Mathieu, C., Wang, N., Lambert, S., Nadzialek, S., Massart, S., Henrotte, E., Douxfils, J., Melard, C., Mandiki, S.N.M., Kestemont, P., Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish. Shellfish Immun. 28 (2010), 931–941.
[42] Douxfils, J., Mathieu, C., Mandiki, S.N.M., Milla, S., Henrotte, E., Wang, N., Vandecan, M., et al. Physiological and proteomic evidences that domestication process differentially modulates the immune status of juvenile Eurasian perch (Perca fluviatilis) under chronic confinement stress. Fish. Shellfish Immun. 31 (2011), 1113–1121.
[43] Deane, E.E., Woo, N.Y., Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am. J. Physiol. Integr. Comp. Physiol. 287 (2004), 1054–1063.
[44] Niu, C.J., Rummer, J.L., Brauner, C.J., Schultz, P.M., Heat Shock Protein induced by a mild heat shock slightly moderates plasma osmolality upon salinity transfer in rainbow trout (Onchorynchus mykiss). Comp. Biochem. Physiol. C 148 (2008), 437–444.
[45] Tine, M., Bonhomme, F., McKenzie, D., Durand, J.-D., Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC Ecol. 10 (2010), 1–8.
[46] Andersson, U., Tracey, K., HMGB1 Is a therapeutic target for sterile Inflammation and Infection. Annu. Rev. Immunol. 29 (2011), 139–162.
[47] Lu, B., Wang, C., Wang, M., Li, W., Chen, F., Tracey, K.J., Wang, H., Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev. Clin. Immunol. 10 (2014), 713–727.