[en] We report a 12-yr data-set (August 2006 - October 2018) of nearly-continuous estimates (n=3275) of gross primary production (GPP), community respiration (CR), and net community production (NCP) in a Posidonia oceanica seagrass meadow, computed from O2 measurements on a mooring at 10 m bottom depth in the Bay of Revellata (Corsica). Both NCP and CR were correlated to GPP and followed the leaf biomass seasonal cycle. The meadow was net autotrophic (NCP of 23±8 mol O2 m-2 yr-1, GPP (83±16 mol O2 m-2 yr-1) > -CR (-60±9 mol O2 m-2 yr-1)), in agreement with oxygen over-saturation (104% at annual scale, 101% in winter and 109% in summer). Calcification (CAL) and CaCO3 dissolution (DIS) rates were evaluated from dissolved inorganic carbon measurements in benthic chamber incubations (August 2006-2009). The meadow was found to be a net sink of CaCO3 (DIS>CAL) at an annual rate of 7 mol CaCO3 m-2 yr-1 that matched estimates of CaCO3 deposition on the meadow by sedimentation from the water column. CAL from epiphyte coralline algae was correlated to GPP, but CAL:GPP ratio (0.1) was lower than reported for coralline algae in cultures (0.6) due to the additional contribution of Posidonia to GPP. Both NCP and net DIS contributed to an annual CO2 sink of -30 mol CO2 m-2 yr-1 distinctly stronger than the estimated net air-sea CO2 flux (-1 mol CO2 m-2 yr-1). This suggests that CO2 input by vertical mixing and/or transport by horizontal advection also strongly contribute to the net atmospheric CO2 exchange.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Champenois, Willy ✱; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Borges, Alberto ✱; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
✱ These authors have contributed equally to this work.
Language :
English
Title :
Net community metabolism of a Posidonia oceanica meadow
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adams, M. P., A. J. P. Ferguson, P. S. Maxwell, B. A. J. Lawson, J. Samper-Villarreal, and K. R. O'Brien. 2016. Light history-dependent respiration explains the hysteresis in the daily ecosystem metabolism of seagrass. Hydrobiologia 766: 75–88. doi:10.1007/s10750-015-2444-5
Apostolaki, E. T., M. Holmer, N. Marbà, and I. Karakassis. 2010. Metabolic imbalance in coastal vegetated (Posidonia oceanica) and unvegetated benthic ecosystems. Ecosystems 13: 459–471. doi:10.1007/s10021-010-9330-9
Atkinson, M. S., and S. V. Smith. 1983. C:N:P: Ratios of bentic marine plants. Limnol. Oceanogr. 28: 568–574. doi:10.4319/lo.1983.28.3.0568
Bailleul, B., and others. 2015. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524: 366–369. doi:10.1038/nature14599
Baines, S. B., and M. L. Pace. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Limnol. Oceanogr. 36: 1078–1090. doi:10.4319/lo.1991.36.6.1078
Barrón, C., C. M. Duarte, M. Frankignoulle, and A. V. Borges. 2006. Organic carbon metabolism and carbonate dynamics in a Mediterranean seagrass (Posidonia oceanica) meadow. Estuar. Coasts 29: 417–426. doi:10.1007/BF02784990
Barrón, C., and C. M. Duarte. 2009. Dissolved organic matter release in a Posidonia oceanica meadow. Mar. Ecol. Prog. Ser. 374: 75–84. doi:10.3354/meps07715
Bay, D. 1984. A field study of the growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi Bay, Corsica. Aquat. Bot. 20: 43–64. doi:10.1016/0304-3770(84)90026-3
Benson, B. B., and D. Krause Jr. 1984. The concentration andisotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol. Oceanogr. 29: 620–632. doi:10.4319/lo.1984.29.3.0620B
Borges, A. V., L.-S. Schiettecatte, G. Abril, B. Delille, and F. Gazeau. 2006. Carbon dioxide in European coastal waters. Estuar. Coast. Shelf Sci. 70: 375–387. doi:10.1016/j.ecss.2006.05.046
Borum, J., K. Sand-Jensen, T. Binzer, O. Pedersen, and T. M. Greve. 2006. Oxygen movement in seagrasses, p. 255–270.In A. W. D. Larkum, R. J. Orth, and C. M. Duarte [eds.], Seagrasses: Biology, ecology and conservation. Dordrecht, The Netherlands: Springer.
Borowitzka, M. A., and A. W. D. Larkum. 1981. Calcification in algae: Mechanisms and the role of metabolism. Crit. Rev. Plant Sci. 6: 1–45. doi:10.1080/07352688709382246
Boudouresque, C. F., and others. 2006. Préservation et conservation des herbiers à Posidonia oceanica. Monaco: Ramoge Publisher, p. 202.
Borges, A. V., and W. Champenois. 2021. Oxygen saturation, water temperature, gross primary production, community respiration, net community production, partial pressure of CO2 over a Posidonia oceanica meadow in the Bay of Revellata (2006–2018). Limnol. Oceangraph. doi:10.5281/zenodo.4421348
Brodersen, K. E., S. M. Trevathan-Tackett, D. A. Nielsen, R. M. Connolly, C. E. Lovelock, T. B. Atwood, and P. I. Macreadie. 2019. Oxygen consumption and sulfate reduction in vegetated coastal habitats: Effects of physical disturbance. Front. Mar. Sci. 6: 14. doi:10.3389/fmars.2019.00014
Cebrián, J., and C. M. Duarte. 1998. Patterns in leaf herbivory on seagrass. Aquat. Bot. 60: 67–82. doi:10.1016/S0304-3770(97)00070-3
Cline, J. D. 1969. Spectrophotometric determination of hydrogen sulphide in natural water. Limnol. Oceanogr. 14: 454–458. doi:10.4319/lo.1969.14.3.0454
Champenois, W., and A. V. Borges. 2012. Seasonal and interannual variations of community metabolism rates of a Posidonia oceanica seagrass meadow. Limnol. Oceanogr. 57: 347–361. doi:10.4319/lo.2012.57.1.0347
Champenois, W., and A. V. Borges. 2019. Inter-annual variations over a decade of primary production of the seagrass Posidonia oceanica. Limnol. Oceanogr. 64: 32–45. doi:10.1002/lno.11017
Dauby, P. 1985. Plankton productivity in gulf of Calvi (Corsica), p. 442–450.In R. Van Grieken and R. Wollast [eds.], Progress in Belgian oceanographic research. Antwerp, Belgium: Antwerp Univ. Press.
Dauby, P., and others. 1995. Particle fluxes over a Mediterranean seagrass bed: A one year case study. Mar. Ecol. Prog. Ser. 126: 233–246. doi:10.3354/meps126233
de la Paz, M., I. E. Huertas, S. Flecha, A. F. Ríos, and F. F. Pérez. 2015. Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: Air-sea fluxes and inter-basin exchange. Prog. Oceanogr. 138: 18–31. doi:10.1016/j.pocean.2015.09.009
Del Giorgio, P. A., and P. J. L. B. Williams. 2005. Respiration in aquatic ecosystems. New York, Oxford Univ. Press, p. 315. doi:10.1093/acprof:oso/9780198527084.001.0001
de los Santos, C. B., and others. 2019. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10: 3356. doi:10.1038/s41467-019-11340-4
Dickson, A. G. 1993. pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep-Sea Res. 40: 107–118. doi:10.1016/0967-0637(93)90055-8
Duarte, C. A., and J. Cebrián. 1996. The fate of marine autotrophic production. Limnol. Oceanogr. 41: 1758–1766. doi:10.4319/lo.1996.41.8.1758
Duarte, C. M., and S. Agustı́. 1998. The CO2 balance of unproductive aquatic ecosystems. Science 281: 234–236. doi:10.1126/science.281.5374.234
Duarte, C. M., and D. Krause-Jensen. 2017. Export from seagrass meadows contributes to marine carbon sequestration. Front. Mar. Sci. 4: 1–13. doi:10.3389/fmars.2017.00013
El Haïkali, B., N. Bensoussan, J.-C. Romano, and V. Bousquet. 2004. Estimation of photosynthesis and calcification rates of Corallina elongata Ellis and Solander, 1786, by measurements of dissolved oxygen, pH and total alkalinity. Sci. Mar. 68: 45–56. doi:10.3989/scimar.2004.68n145
Felisberto, P., and others. 2015. Acoustic monitoring of O2 production of a seagrass meadow. J. Exp. Mar. Biol. Ecol. 464: 75–87. doi:10.1016/j.jembe.2014.12.013
Frankignoulle, M., and J.-M. Bouquegneau. 1987. Seasonal variations of the diel carbon budget of a marine macrophytes ecosystem. Mar. Ecol. Prog. Ser. 38: 197–199. doi:10.3354/meps038197
Frankignoulle, M., C. Canon, and J.-P. Gattuso. 1994. Marine calcification as a source of carbon dioxide: Positive feedback of increasing atmospheric CO2. Limnol. Oceanogr. 39: 458–462. doi:10.4319/lo.1994.39.2.0458
Gacia, E., N. Marbà, J. Cebrián, R. Vaquer-Sunyer, N. Garcias-Bonet, and C. M. Duarte. 2012. Thresholds of irradiance for seagrass Posidonia oceanica meadow metabolism. Mar. Ecol. Prog. Ser. 466: 69–79. doi:10.3354/meps09928
Gattuso, J.-P., M. Frankignoulle, and R. Wollast. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29: 405–434. doi:10.1146/annurev.ecolsys.29.1.405
Gazeau, F., and others. 2005. Whole system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosci. 2: 43–60. doi:10.5194/bg-2-43-2005
Glud, R. N., J. K. Gundersen, B. B. Jørgensen, N. P. Revsbech, and H. D. Schulz. 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: In situ and laboratory measurements. Deep Sea Res I 41: 1767–1788. doi:10.1016/0967-0637(94)90072-8
Ho, D. T., C. S. Law, M. J. Smith, P. Schlosser, M. Harvey, and P. Hill. 2006. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys. Res. Lett. 33: L16611. doi:10.1029/2006GL026817
Holmer, M., F. Ø. Andersen, N. Holmboe, E. Kristensen, and N. Thongtham. 1999. Transformation and exchange processes in the Bangrong mangrove forest-seagrass bed system, Thailand. Seasonal and spatial variations in benthic metabolism and sulfur biogeochemistry. Aquat. Microb. Ecol. 20: 203–212. doi:10.3354/ame020203
Holmer, M., C. M. Duarte, and N. Marbá. 2003. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66: 223–239. doi:10.1023/B:BIOG.0000005326.35071.51
Howard, J. L., J. C. Creed, M. V. P. Aguiar, and J. W. Fouqurean. 2018. CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon” storage. Limnol. Oceanogr. 63: 160–172. doi:10.1002/lno.10621
Jacquemart, J., and V. Demoulin. 2006. Inventaire des macroalgues éphiphytes des feuilles de Posidonia oceanica (L.) Delile dans la baie de la Revellata (Calvi, Corse). Lejeunia 181: 70.
Knap, A. H., A. E. Michaels, A. Close, E, H.W. Ducklow and A.G. Dickson, 1996. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. Bergen, Norway, UNESCO. JGOFS Report no. 19. Available from http://ijgofs.whoi.edu/Publications/Report_Series/JGOFS_19.pdf
Koopmans, D., M. Holtappels, A. Chennu, M. Weber, and D. de Beer. 2020. High net primary production of Mediterranean Seagrass (Posidonia oceanica) meadows determined with aquatic Eddy covariance. Front. Mar. Sci. 7: 1–13. doi:10.3389/fmars.2020.00118
Langdon, C., and others. 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem. Cycles 14: 639–654. doi:10.1029/1999GB001195
Long, M. H., K. Sutherland, S. D. Wankel, D. J. Burdige, and R. C. Zimmerman. 2020. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnol. Oceanogr. 65: 314–324. doi:10.1002/lno.11299
Long, M. H., P. Berg, and J. F. Falter. 2015. Seagrass metabolism across a productivity gradient using the eddy covariance, Eulerian control volume, and biomass addition techniques. J. Geophys. Res. 120: 3624–3639. doi:10.1002/2014JC010352
Marañón, E., P. Cermeno, E. Fernández, J. Rodriguez, and L. Zabala. 2004. Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol. Oceanogr. 49: 1652–1666. doi:10.4319/lo.2004.49.5.1652
Marbà, N., M. Holmer, E. Gacia, and C. Barron. 2006. Seagrass beds and coastal biogeochemistry, p. 135–157.In A. W. D. Larkum, R. J. Orth, and C. M. Duarte [eds.], Seagrasses: Biology, ecology and conservation. Dordrecht, The Netherlands, Springer. doi:10.1007/978-1-4020-2983-7_6
Martin, S., A. Charnoz, and J.-P. Gattuso. 2013. Photosynthesis, respiration and calcification in the Mediterranean crustose coralline alga Lithophyllum cabiochae (Corallinales, Rhodophyta). Eur. J. Phycol. 48: 163–172. doi:10.1080/09670262.2013.786790
Mateo, M. A., J. Romero, M. Pérez, M. M. Littler, and D. S. Littler. 1997. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci. 44: 103–110. doi:10.1006/ecss.1996.0116
Mateo, M. A., P. Renom, M. A. Hemminga, and J. Peene. 2001. Measurement of seagrass production using the 13C stable isotope compared with classical O2 and 14C methods. Mar. Ecol. Prog. Ser. 223: 157–165. doi:10.3354/meps223157
Mazzella, L., M. B. Scipione, and M. C. Buia. 1989. Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow. Mar. Ecol. 10: 107–129. doi:10.1111/j.1439-0485.1989.tb00069.x
Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz. 1973. Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897–907. doi:10.4319/lo.1973.18.6.0897
Morana, C., H. Sarmento, J.-P. Descy, J.-M. Gasol, A. V. Borges, S. Bouillon, and F. Darchambeau. 2014. Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic prokaryotes in large tropical lakes. Limnol. Oceanogr. 59: 1364–1375. doi:10.4319/lo.2014.59.4.1364
Moriarty, D. J. W., R. L. Iverson, and P. C. Pollard. 1986. Exudation of organic carbon by the seagrass Halodule wrightii Aschers and its effect on bacterial growth in the sediment. J. Exp. Mar. Biol. Ecol. 96: 115–126. doi:10.1016/0022-0981(86)90237-6
Moulin, E., A. Jordens, and R. Wollast. 1985. Influence of the aerobic bacterial respiration on the early dissolution of carbonates in coastal sediments, p. 196-208. In R. Van Grieken and R. Wollast [eds.], Progress in Belgian Oceanographic Research: Proceedings of a symposium held at the Palace of Academies Brussels. 3–5 March 1985. Antwerp Univ. Press. Antwerp, Belgium.
Noguchi, I., and K. Yoshida. 2008. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion 8: 87–99. doi:10.1016/j.mito.2007.09.003
Odum, H. T. 1956. Primary production in flowing waters. Limnol. Oceanogr. 1: 102–117. doi:10.4319/lo.1956.1.2.0102
Penhale, P. A., and W. O. Smith. 1977. Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnol. Oceanogr. 22: 400–407. doi:10.4319/lo.1977.22.3.0400
Pergent, G., and C. Pergent-Martini. 1991. Leaf renewal cycle and primary production of Posidonia oceanica in the bay of Lacco Ameno (Ischia, Italy) using lepidochronological analysis. Aquat. Bot. 42: 49–66. doi:10.1016/0304-3770(91)90105-E
Rasmusson, L. M., and M. Björk. 2014. Determining light suppression of mitochondrial respiration for three temperate marine macrophytes using the Kok method. Bot. Mar. 57: 483–486. doi:10.1515/bot-2014-0046
Smith, S. V., and G. S. Key. 1975. Carbon dioxide and metabolism in marine environments. Limnol. Oceanogr. 20: 493–495. doi:10.4319/lo.1975.20.3.0493
Takahashi, T., and others. 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II 49: 1601–1622. doi:10.1016/S0967-0645(02)00003-6
Telesca, L., and others. 2015. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Sci. Rep. 5: 12505. doi:10.1038/srep12505
Trevathan-Tackett, S. M. 2017. Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiol. Ecol. 93: others. doi:10.1093/femsec/fix033
Van Dam, B. R., C. Lopes, C. L. Osburn, and J. W. Fourqurean. 2019. Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows. Biogeosciences 16: 4411–4428. doi:10.5194/bg-16-4411-2019
van der Heijden, L. H., and N. A. Kamenos. 2015. Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial. Biogeosciences 12: 6429–6441. doi:10.5194/bg-12-6429-2015
Velimirov, B., and others. 2016. Estimating carbon fluxes in a Posidonia oceanica system: Paradox of the bacterial carbon demand. Estuar. Coast. Shelf Sci. 171: 23–34. doi:10.1016/j.ecss.2016.01.008
Weiss, R. F., and B. A. Price. 1980. Nitrous oxide solubility in water and seawater. Mar. Chem. 8: 347–359. doi:10.1016/0304-4203(80)90024-9
Wilson, S. T., and others. 2018. An intercomparison of oceanic methane and nitrous oxide measurements. Biogeosciences 15: 5891–5907. doi:10.5194/bg-15-5891-2018
Yates, K. K., and R. B. Halley. 2006. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay. Estuar. Coasts 29: 24–39. doi:10.1007/BF02784696
Zieman, J. C. 1974. Methods for the study of the growth and production of turtle grass, Thalassia testudinum konig. Aquaculuture 4: 139–143. doi:10.1016/0044-8486(74)90029-5
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.