development; malformations; model systems; neocortex; progenitors
Abstract :
[en] Malformations of the human neocortex in development constitute a heterogeneous group of complex disorders, resulting in pathologies such as intellectual disability and abnormal neurological/psychiatric conditions such as epilepsy or autism. Advances in genomic sequencing and genetic techniques have allowed major breakthroughs in the field, revealing the molecular basis of several of these malformations. Here, we focus on those malformations of the human neocortex, notably microcephaly, and macrocephaly, where an underlying basis has been established at the level of the neural stem/progenitor cells (NPCs) from which neurons are directly or indirectly derived. Particular emphasis is placed on NPC cell biology and NPC markers. A second focus of this review is on experimental model systems used to dissect the underlying mechanisms of malformations of the human neocortex in development at the cellular and molecular level. The most commonly used model system have been genetically modified mice. However, although basic features of neocortical development are conserved across the various mammalian species, some important differences between mouse and human exist. These pertain to the abundance of specific NPC types and/or their proliferative capacity, as exemplified in the case of basal radial glia. These differences limit the ability of mouse models to fully recapitulate the phenotypes of malformations of the human neocortex. For this reason, additional experimental model systems, notably the ferret, non-human primates and cerebral organoids, have recently emerged as alternatives and shown to be of increasing relevance. It is therefore important to consider the benefits and limitations of each of these model systems for studying malformations of the human neocortex in development.
Attardo, A., Calegari, F., Haubensak, W., Wilsch-Brauninger, M., Huttner, W. B., (2008). Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny., PLoS One, 3:e2388. 10.1371/journal.pone.0002388, 18545663.
Bani-Yaghoub, M., Tremblay, R. G., Lei, J. X., Zhang, D., Zurakowski, B., Sandhu, J. K., (2006). Role of Sox2 in the development of the mouse neocortex., Dev. Biol., 295, 52–66. 10.1016/j.ydbio.2006.03.007, 16631155.
Barkovich, A. J., Guerrini, R., Kuzniecky, R. I., Jackson, G. D., Dobyns, W. B., (2012). A developmental and genetic classification for malformations of cortical development: update 2012., Brain, 135(Pt 5), 1348–1369. 10.1093/brain/aws019, 22427329.
Bellus, G. A., McIntosh, I., Smith, E. A., Aylsworth, A. S., Kaitila, I., Horton, W. A., (1995). A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia., Nat. Genet., 10, 357–359. 10.1038/ng0795-357, 7670477.
Betizeau, M., Cortay, V., Patti, D., Pfister, S., Gautier, E., Bellemin-Meìnard, A., (2013). Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate., Neuron, 80, 442–457. 10.1016/j.neuron.2013.09.032, 24139044.
Bignami, A., Raju, T., Dahl, D., (1982). Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera., Dev. Biol., 91, 286–295. 10.1016/0012-1606(82)90035-5, 7047260.
Bilguvar, K., Ozturk, A. K., Louvi, A., Kwan, K. Y., Choi, M., Tatli, B., (2010). Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations., Nature, 467, 207–210. 10.1038/nature09327, 20729831.
Brochner, C. B., Mollgard, K., (2016). SSEA-4 and YKL-40 positive progenitor subtypes in the subventricular zone of developing human neocortex., Glia, 64, 90–104. 10.1002/glia.22905, 26295543.
Bryant, K., Preuss, T., (2018). “A Comparative Perspective on the Human Temporal Lobe,” in Digital Endocasts, eds, Bruner, E., Ogihara, N., Tanabe, H., (Basingstoke: Springer Nature), 239–258. 10.1007/978-4-431-56582-6_16.
Buchsbaum, I. Y., Cappello, S., (2019). Neuronal migration in the CNS during development and disease: insights from in vivo and in vitro models., Development, 146:dev163766. 10.1242/dev.163766, 30626593.
Capecchi, M. R., Pozner, A., (2015). ASPM regulates symmetric stem cell division by tuning cyclin E ubiquitination., Nat. Commun., 6:8763. 10.1038/ncomms9763, 26581405.
Cardenas, A., Villalba, A., de Juan Romero, C., Pico, E., Kyrousi, C., Tzika, A. C., (2018). Evolution of cortical neurogenesis in amniotes controlled by robo signaling levels., Cell, 174, 590–606.e21. 10.1016/j.cell.2018.06.007, 29961574.
Chenn, A., Walsh, C. A., (2002). Regulation of cerebral cortical size by control of cell cycle exit in neural precursors., Science, 297, 365–369. 10.1126/science.1074192, 12130776.
Choi, B. H., (1986). Glial fibrillary acidic protein in radial glia of early human fetal cerebrum: a light and electron microscopic immunoperoxidase study., J. Neuropathol. Exp. Neurol., 45, 408–418. 10.1097/00005072-198607000-00003, 3522808.
Choi, B. H., Lapham, L. W., (1978). Radial glia in the human fetal cerebrum: a combined Golgi, immunofluorescent and electron microscopic study., Brain Res., 148, 295–311. 10.1016/0006-8993(78)90721-7, 77708.
Cugola, F. R., Fernandes, I. R., Russo, F. B., Freitas, B. C., Dias, J. L., Guimaraes, K. P., (2016). The brazilian Zika virus strain causes birth defects in experimental models., Nature, 534, 267–271. 10.1038/nature18296, 27279226.
Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., (2016). Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3., Cell Stem Cell, 19, 258–265. 10.1016/j.stem.2016.04.014, 27162029.
Dehay, C., Kennedy, H., Kosik, K. S., (2015). The outer subventricular zone and primate-specific cortical complexification., Neuron, 85, 683–694. 10.1016/j.neuron.2014.12.060, 25695268.
Desir, J., Cassart, M., David, P., Van Bogaert, P., Abramowicz, M., (2008). Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient pre- and post-natally., Am. J. Med. Genet. A, 146A, 1439–1443. 10.1002/ajmg.a.32312, 18452193.
D’Gama, A. M., Woodworth, M. B., Hossain, A. A., Bizzotto, S., Hatem, N. E., LaCoursiere, C. M., (2017). Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias., Cell Rep., 21, 3754–3766. 10.1016/j.celrep.2017.11.106, 29281825.
Ding, W., Wu, Q., Sun, L., Pan, N. C., Wang, X., (2019). Cenpj regulates cilia disassembly and neurogenesis in the developing mouse cortex., J. Neurosci., 39, 1994–2010. 10.1523/jneurosci.1849-18.2018, 30626697.
Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., (2008). Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals., Cell Stem Cell, 3, 519–532. 10.1016/j.stem.2008.09.002, 18983967.
Englund, C., Fink, A., Lau, C., Pham, D., Daza, R. A., Bulfone, A., (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex., J. Neurosci., 25, 247–251. 10.1523/JNEUROSCI.2899-04.2005, 15634788.
Feng, L., Hatten, M. E., Heintz, N., (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS., Neuron, 12, 895–908. 10.1016/0896-6273(94)90341-7, 8161459.
Fernandez, V., Llinares-Benadero, C., Borrell, V., (2016). Cerebral cortex expansion and folding: what have we learned?, EMBO J., 35, 1021–1044. 10.15252/embj.201593701, 27056680.
Fietz, S. A., Huttner, W. B., (2011). Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective., Curr. Opin. Neurobiol., 21, 23–35. 10.1016/j.conb.2010.10.002, 21036598.
Fietz, S. A., Kelava, I., Vogt, J., Wilsch-Brauninger, M., Stenzel, D., Fish, J. L., (2010). OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling., Nat. Neurosci., 13, 690–699. 10.1038/nn.2553, 20436478.
Fietz, S. A., Lachmann, R., Brandl, H., Kircher, M., Samusik, N., Schroder, R., (2012). Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal., Proc. Natl. Acad. Sci. U.S.A., 109, 11836–11841. 10.1073/pnas.1209647109, 22753484.
Florio, M., Albert, M., Taverna, E., Namba, T., Brandl, H., Lewitus, E., (2015). Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion., Science, 347, 1465–1470. 10.1126/science.aaa1975, 25721503.
Florio, M., Huttner, W. B., (2014). Neural progenitors, neurogenesis and the evolution of the neocortex., Development, 141, 2182–2194. 10.1242/dev.090571, 24866113.
Frederiksen, K., McKay, R. D., (1988). Proliferation and differentiation of rat neuroepithelial precursor cells in vivo., J. Neurosci., 8, 1144–1151. 10.1523/jneurosci.08-04-01144.1988.
Fujimori, A., Itoh, K., Goto, S., Hirakawa, H., Wang, B., Kokubo, T., (2014). Disruption of Aspm causes microcephaly with abnormal neuronal differentiation., Brain Dev., 36, 661–669. 10.1016/j.braindev.2013.10.006, 24220505.
Garcia-Moreno, F., Vasistha, N. A., Trevia, N., Bourne, J. A., Molnar, Z., (2012). Compartmentalization of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent., Cereb. Cortex, 22, 482–492. 10.1093/cercor/bhr312, 22114081.
Gladwyn-Ng, I., Cordon-Barris, L., Alfano, C., Creppe, C., Couderc, T., Morelli, G., (2018). Stress-induced unfolded protein response contributes to Zika virus-associated microcephaly., Nat. Neurosci., 21, 63–71. 10.1038/s41593-017-0038-34, 29230053.
Götz, M., Huttner, W. B., (2005). The cell biology of neurogenesis., Nat. Rev. Mol. Cell Biol., 6, 777–788. 10.1038/nrm1739, 16314867.
Götz, M., Stoykova, A., Gruss, P., (1998). Pax6 controls radial glia differentiation in the cerebral cortex., Neuron, 21, 1031–1044. 10.1016/s0896-6273(00)80621-2.
Gruber, R., Zhou, Z., Sukchev, M., Joerss, T., Frappart, P. O., Wang, Z. Q., (2011). MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway., Nat. Cell Biol., 13, 1325–1334. 10.1038/ncb2342, 21947081.
Hansen, D. V., Lui, J. H., Parker, P. R., Kriegstein, A. R., (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex., Nature, 464, 554–561. 10.1038/nature08845, 20154730.
Hartfuss, E., Galli, R., Heins, N., Gotz, M., (2001). Characterization of CNS precursor subtypes and radial glia., Dev. Biol., 229, 15–30. 10.1006/dbio.2000.9962, 11133151.
Haubensak, W., Attardo, A., Denk, W., Huttner, W. B., (2004). Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis., Proc. Natl. Acad. Sci. U.S.A., 101, 3196–3201. 10.1073/pnas.0308600100, 14963232.
Heide, M., Huttner, W. B., Mora-Bermudez, F., (2018). Brain organoids as models to study human neocortex development and evolution., Curr. Opin. Cell Biol., 55, 8–16. 10.1016/j.ceb.2018.06.006, 30006054.
Heng, X., Guo, Q., Leung, A. W., Li, J. Y., (2017). Analogous mechanism regulating formation of neocortical basal radial glia and cerebellar Bergmann glia., eLife, 6:e23253. 10.7554/eLife.23253, 28489004.
Hevner, R. F., (2019). Intermediate progenitors and Tbr2 in cortical development., J. Anat. [Epub ahead of print].
Howard, B. M., Zhicheng, M., Filipovic, R., Moore, A. R., Antic, S. D., Zecevic, N., (2008). Radial glia cells in the developing human brain., Neuroscientist, 14, 459–473. 10.1177/1073858407313512, 18467668.
Hutchinson, E. B., Schwerin, S. C., Radomski, K. L., Sadeghi, N., Jenkins, J., Komlosh, M. E., (2017). Population based MRI and DTI templates of the adult ferret brain and tools for voxelwise analysis., Neuroimage, 152, 575–589. 10.1016/j.neuroimage.2017.03.009, 28315740.
Hutton, S. R., Pevny, L. H., (2011). SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon., Dev. Biol., 352, 40–47. 10.1016/j.ydbio.2011.01.015, 21256837.
Inglis-Broadgate, S. L., Thomson, R. E., Pellicano, F., Tartaglia, M. A., Pontikis, C. C., Cooper, J. D., (2005). FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development., Dev. Biol., 279, 73–85. 10.1016/j.ydbio.2004.11.035, 15708559.
Insolera, R., Bazzi, H., Shao, W., Anderson, K. V., Shi, S. H., (2014). Cortical neurogenesis in the absence of centrioles., Nat. Neurosci., 17, 1528–1535. 10.1038/nn.3831, 25282615.
Jackson, A. P., Eastwood, H., Bell, S. M., Adu, J., Toomes, C., Carr, I. M., (2002). Identification of microcephalin, a protein implicated in determining the size of the human brain., Am. J. Hum. Genet., 71, 136–142. 10.1086/341283, 12046007.
Jayaraman, D., Bae, B. I., Walsh, C. A., (2018). The genetics of primary microcephaly., Annu. Rev. Genomics Hum. Genet., 19, 177–200. 10.1146/annurev-genom-083117-021441, 29799801.
Jayaraman, D., Kodani, A., Gonzalez, D. M., Mancias, J. D., Mochida, G. H., Vagnoni, C., (2016). Microcephaly proteins Wdr62 and Aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate., Neuron, 92, 813–828. 10.1016/j.neuron.2016.09.056, 27974163.
Johnson, M. B., Sun, X., Kodani, A., Borges-Monroy, R., Girskis, K. M., Ryu, S. C., (2018). Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size., Nature, 556, 370–375. 10.1038/s41586-018-0035-0, 29643508.
Johnson, M. B., Wang, P. P., Atabay, K. D., Murphy, E. A., Doan, R. N., Hecht, J. L., (2015). Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex., Nat. Neurosci., 18, 637–646. 10.1038/nn.3980, 25734491.
Juric-Sekhar, G., Hevner, R. F., (2019). Malformations of cerebral cortex development: molecules and mechanisms., Annu. Rev. Pathol., 14, 293–318. 10.1146/annurev-pathmechdis-012418-012927, 30677308.
Kalebic, N., Gilardi, C., Stepien, B., Wilsch-Brauninger, M., Long, K. R., Namba, T., (2019). Neocortical expansion due to increased proliferation of basal progenitors is linked to changes in their morphology., Cell Stem Cell, 24, 535–550.e9. 10.1016/j.stem.2019.02.017, 30905618.
Kamei, Y., Inagaki, N., Nishizawa, M., Tsutsumi, O., Taketani, Y., Inagaki, M., (1998). Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin., Glia, 23, 191–199. 10.1002/(sici)1098-1136(199807)23:3<191::aid-glia2>3.0.co;2-8, 9633804.
Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H., Reiner, O., (2018). Human brain organoids on a chip reveal the physics of folding., Nat. Phys., 14, 515–522. 10.1038/s41567-018-0046-7, 29760764.
Kawasaki, H., (2018). Molecular investigations of the development and diseases of cerebral cortex folding using gyrencephalic mammal ferrets., Biol. Pharm. Bull., 41, 1324–1329. 10.1248/bpb.b18-00142, 30175769.
Kawasaki, H., Iwai, L., Tanno, K., (2012). Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation., Mol. Brain, 5:24. 10.1186/1756-6606-5-24, 22716093.
Kawasaki, H., Toda, T., Tanno, K., (2013). In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation., Biol. Open, 2, 95–100. 10.1242/bio.20123160, 23336081.
Kelava, I., Reillo, I., Murayama, A. Y., Kalinka, A. T., Stenzel, D., Tomancak, P., (2012). Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus., Cereb. Cortex, 22, 469–481. 10.1093/cercor/bhr301, 22114084.
Klaus, J., Kanton, S., Kyrousi, C., Ayo-Martin, A. C., Di Giaimo, R., Riesenberg, S., (2019). Altered neuronal migratory trajectories in human cerebral organoids derived from individuals with neuronal heterotopia., Nat. Med., 25, 561–568. 10.1038/s41591-019-0371-0, 30858616.
Kowalczyk, T., Pontious, A., Englund, C., Daza, R. A., Bedogni, F., Hodge, R., (2009). Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex., Cereb. Cortex, 19, 2439–2450. 10.1093/cercor/bhn260, 19168665.
Kriegstein, A., Noctor, S., Martinez-Cerdeno, V., (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion., Nat. Rev. Neurosci., 7, 883–890. 10.1038/nrn2008, 17033683.
Kurtz, A., Zimmer, A., Schnutgen, F., Bruning, G., Spener, F., Muller, T., (1994). The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development., Development, 120, 2637–2649. 7956838.
LaMonica, B. E., Lui, J. H., Hansen, D. V., Kriegstein, A. R., (2013). Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex., Nat. Commun., 4:1665. 10.1038/ncomms2647, 23575669.
Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., (2013). Cerebral organoids model human brain development and microcephaly., Nature, 501, 373–379. 10.1038/nature12517, 23995685.
Lee, J. H., Huynh, M., Silhavy, J. L., Kim, S., Dixon-Salazar, T., Heiberg, A., (2012). De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly., Nat. Genet., 44, 941–945. 10.1038/ng.2329, 22729223.
Li, Y., Muffat, J., Omer, A., Bosch, I., Lancaster, M. A., Sur, M., (2017). Induction of expansion and folding in human cerebral organoids., Cell Stem Cell, 20, 385–396.e3. 10.1016/j.stem.2016.11.017, 28041895.
Lin, T., Sandusky, S. B., Xue, H., Fishbein, K. W., Spencer, R. G., Rao, M. S., (2003). A central nervous system specific mouse model for thanatophoric dysplasia type II., Hum. Mol. Genet., 12, 2863–2871. 10.1093/hmg/ddg309, 12966031.
Lizarraga, S. B., Margossian, S. P., Harris, M. H., Campagna, D. R., Han, A. P., Blevins, S., (2010). Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors., Development, 137, 1907–1917. 10.1242/dev.040410, 20460369.
Lui, J. H., Hansen, D. V., Kriegstein, A. R., (2011). Development and evolution of the human neocortex., Cell, 146, 18–36. 10.1016/j.cell.2011.06.030, 21729779.
Malatesta, P., Hartfuss, E., Gotz, M., (2000). Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage., Development, 127, 5253–5263. 11076748.
Marjanovic, M., Sanchez-Huertas, C., Terre, B., Gomez, R., Scheel, J. F., Pacheco, S., (2015). CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination., Nat. Commun., 6:7676. 10.1038/ncomms8676, 26158450.
Masuda, K., Toda, T., Shinmyo, Y., Ebisu, H., Hoshiba, Y., Wakimoto, M., (2015). Pathophysiological analyses of cortical malformation using gyrencephalic mammals., Sci. Rep., 5:15370. 10.1038/srep15370, 26482531.
Mirzaa, G., Parry, D. A., Fry, A. E., Giamanco, K. A., Schwartzentruber, J., Vanstone, M., (2014). De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome., Nat. Genet., 46, 510–515. 10.1038/ng.2948, 24705253.
Mission, J. P., Takahashi, T., Caviness, V. S., Jr. (1991). Ontogeny of radial and other astroglial cells in murine cerebral cortex., Glia, 4, 138–148. 10.1002/glia.440040205, 1709615.
Miyata, T., Kawaguchi, A., Okano, H., Ogawa, M., (2001). Asymmetric inheritance of radial glial fibers by cortical neurons., Neuron, 31, 727–741. 10.1016/s0896-6273(01)00420-2, 11567613.
Miyata, T., Kawaguchi, A., Saito, K., Kawano, M., Muto, T., Ogawa, M., (2004). Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells., Development, 131, 3133–3145. 10.1242/dev.01173, 15175243.
Mlakar, J., Korva, M., Tul, N., Popovic, M., Poljsak-Prijatelj, M., Mraz, J., (2016). Zika virus associated with microcephaly., N. Engl. J. Med., 374, 951–958. 10.1056/NEJMoa1600651, 26862926.
Mo, Z., Zecevic, N., (2007). Is Pax6 critical for neurogenesis in the human fetal brain?, Cereb. Cortex, 18, 1455–1465. 10.1093/cercor/bhm181, 17947347.
Mora-Bermudez, F., Badsha, F., Kanton, S., Camp, J. G., Vernot, B., Kohler, K., (2016). Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development., eLife, 5:e18683. 10.7554/eLife.18683, 27669147.
Namba, T., Huttner, W. B., (2017). Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex., WIREs Dev. Biol., 6:e256. 10.1002/wdev.256, 27865053.
Namba, T., Vaid, S., Huttner, W. B., (2019). Primate neocortex development and evolution: conserved versus evolved folding., J. Comp. Neurol., 527, 1621–1632. 10.1002/cne.24606, 30552689.
Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., Kriegstein, A. R., (2001). Neurons derived from radial glial cells establish radial units in neocortex., Nature, 409, 714–720. 10.1038/35055553, 11217860.
Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., Kriegstein, A. R., (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases., Nat. Neurosci., 7, 136–144. 10.1038/nn1172, 14703572.
Nowakowski, T. J., Pollen, A. A., Di Lullo, E., Sandoval-Espinosa, C., Bershteyn, M., Kriegstein, A. R., (2016a). Expression analysis highlights AXL as a candidate Zika virus entry receptor in neural stem cells., Cell Stem Cell, 18, 591–596. 10.1016/j.stem.2016.03.012, 27038591.
Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C., Kriegstein, A. R., (2016b). Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development., Neuron, 91, 1219–1227. 10.1016/j.neuron.2016.09.005, 27657449.
Oliveira Melo, A. S., Malinger, G., Ximenes, R., Szejnfeld, P. O., Alves Sampaio, S., Bispo de Filippis, A. M., (2016). Zika virus intrauterine infection causes fetal brain abnormality and microcephaly: tip of the iceberg?, Ultrasound Obstet. Gynecol., 47, 6–7. 10.1002/uog.15831, 26731034.
Ostrem, B. E., Lui, J. H., Gertz, C. C., Kriegstein, A. R., (2014). Control of outer radial glial stem cell mitosis in the human brain., Cell Rep., 8, 656–664. 10.1016/j.celrep.2014.06.058, 25088420.
Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D., Livesey, F. J., (2016). 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size., Cell Stem Cell, 18, 467–480. 10.1016/j.stem.2016.03.003, 27049876.
Paridaen, J. T., Huttner, W. B., (2014). Neurogenesis during development of the vertebrate central nervous system., EMBO Rep., 15, 351–364. 10.1002/embr.201438447, 24639559.
Passemard, S., Verloes, A., Billette de Villemeur, T., Boespflug-Tanguy, O., Hernandez, K., Laurent, M., (2016). Abnormal spindle-like microcephaly-associated (ASPM) mutations strongly disrupt neocortical structure but spare the hippocampus and long-term memory., Cortex, 74, 158–176. 10.1016/j.cortex.2015.10.010, 26691732.
Poduri, A., Evrony, G. D., Cai, X., Elhosary, P. C., Beroukhim, R., Lehtinen, M. K., (2012). Somatic activation of AKT3 causes hemispheric developmental brain malformations., Neuron, 74, 41–48. 10.1016/j.neuron.2012.03.010, 22500628.
Pollen, A. A., Bhaduri, A., Andrews, M. G., Nowakowski, T. J., Meyerson, O. S., Mostajo-Radji, M. A., (2019). Establishing cerebral organoids as models of human-specific brain evolution., Cell, 176, 743–756. 10.1016/j.cell.2019.01.017, 30735633.
Pollen, A. A., Nowakowski, T. J., Chen, J., Retallack, H., Sandoval-Espinosa, C., Nicholas, C. R., (2015). Molecular identity of human outer radial glia during cortical development., Cell, 163, 55–67. 10.1016/j.cell.2015.09.004, 26406371.
Pulvers, J. N., Bryk, J., Fish, J. L., Wilsch-Bräuninger, M., Arai, Y., Schreier, D., (2010). Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline., Proc. Natl. Acad. Sci. U.S.A., 107, 16595–16600. 10.1073/pnas.1010494107, 20823249.
Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure., Cell, 165, 1238–1254. 10.1016/j.cell.2016.04.032, 27118425.
Rakic, P., (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex., J. Comp. Neurol., 145, 61–83. 10.1002/cne.901450105, 4624784.
Rakic, P., (2003a). Developmental and evolutionary adaptations of cortical radial glia., Cereb. Cortex, 13, 541–549. 10.1093/cercor/13.6.541, 12764027.
Reillo, I., de Juan Romero, C., Cardenas, A., Clasca, F., Martinez-Martinez, M. A., Borrell, V., (2017). A complex code of extrinsic influences on cortical progenitor cells of higher mammals., Cereb. Cortex, 27, 4586–4606. 10.1093/cercor/bhx171, 28922855.
Reillo, I., de Juan Romero, C., Garcia-Cabezas, M. A., Borrell, V., (2011). A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex., Cereb. Cortex, 21, 1674–1694. 10.1093/cercor/bhq238, 21127018.
Reiner, O., (2013). LIS1 and DCX: implications for brain development and human disease in relation to microtubules., Scientifica, 2013:393975. 10.1155/2013/393975, 24278775.
Romero, D. M., Bahi-Buisson, N., Francis, F., (2018). Genetics and mechanisms leading to human cortical malformations., Semin. Cell Dev. Biol., 76, 33–75. 10.1016/j.semcdb.2017.09.031, 28951247.
Rousseau, F., Bonaventure, J., Legeai-Mallet, L., Pelet, A., Rozet, J. M., Maroteaux, P., (1994). Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia., Nature, 371, 252–254. 10.1038/371252a0, 8078586.
Roy, A., Skibo, J., Kalume, F., Ni, J., Rankin, S., Lu, Y., (2015). Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy., eLife, 4:e12703. 10.7554/eLife.12703, 26633882.
Sasaki, E., Suemizu, H., Shimada, A., Hanazawa, K., Oiwa, R., Kamioka, M., (2009). Generation of transgenic non-human primates with germline transmission., Nature, 459, 523–527. 10.1038/nature08090, 19478777.
Sauer, F. C., (1935). Mitosis in the neural tube., J. Comp. Neurol., 62, 377–405. 10.1002/cne.900620207.
Schenk, J., Wilsch-Brauninger, M., Calegari, F., Huttner, W. B., (2009). Myosin II is required for interkinetic nuclear migration of neural progenitors., Proc. Natl. Acad. Sci. U.S.A., 106, 16487–16492. 10.1073/pnas.0908928106, 19805325.
Shi, L., Luo, X., Jiang, J., Chen, Y., Liu, C., Hu, T., (2019). Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development., Natl. Sci. Rev., 6, 480–493. 10.1093/nsr/nwz043.
Shiang, R., Thompson, L. M., Zhu, Y. Z., Church, D. M., Fielder, T. J., Bocian, M., (1994). Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia., Cell, 78, 335–342. 10.1016/0092-8674(94)90302-6.
Shibata, T., Yamada, K., Watanabe, M., Ikenaka, K., Wada, K., Tanaka, K., (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord., J. Neurosci., 17, 9212–9219. 10.1523/jneurosci.17-23-09212.1997, 9364068.
Shitamukai, A., Konno, D., Matsuzaki, F., (2011). Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors., J. Neurosci., 31, 3683–3695. 10.1523/JNEUROSCI.4773-10.2011, 21389223.
Smart, I. H., Dehay, C., Giroud, P., Berland, M., Kennedy, H., (2002). Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey., Cereb. Cortex, 12, 37–53. 10.1093/cercor/12.1.37, 11734531.
Smart, I. H. M., (1972a). Proliferative characteristics of the ependymal layer during the early development of the mouse diencephalon, as revealed by recording the number, location, and plane of cleavage of mitotic figures., J. Anat., 113, 109–129. 4648478.
Smart, I. H. M., (1972b). Proliferative characteristics of the ependymal layer during the early development of the spinal cord in the mouse., J. Anat., 111, 365–380. 4560930.
Tamamaki, N., Nakamura, K., Okamoto, K., Kaneko, T., (2001). Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex., Neurosci. Res., 41, 51–60. 10.1016/s0168-0102(01)00259-0.
Taverna, E., Götz, M., Huttner, W. B., (2014). The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex., Annu. Rev. Cell. Dev. Biol., 30, 465–502. 10.1146/annurev-cellbio-101011-155801, 25000993.
Taverna, E., Mora-Bermudez, F., Strzyz, P. J., Florio, M., Icha, J., Haffner, C., (2016). Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells., Sci. Rep., 6:21206. 10.1038/srep21206, 26879757.
Tavormina, P. L., Shiang, R., Thompson, L. M., Zhu, Y. Z., Wilkin, D. J., Lachman, R. S., (1995). Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3., Nat. Genet., 9, 321–328. 10.1038/ng0395-321, 7773297.
Thomsen, E. R., Mich, J. K., Yao, Z., Hodge, R. D., Doyle, A. M., Jang, S., (2016). Fixed single-cell transcriptomic characterization of human radial glial diversity., Nat. Methods, 13, 87–93. 10.1038/nmeth.3629, 26524239.
Vaid, S., Camp, J. G., Hersemann, L., Eugster Oegema, C., Heninger, A. K., Winkler, S., (2018). A novel population of Hopx-dependent basal radial glial cells in the developing mouse neocortex., Development, 145:dev.169276. 10.1242/dev.169276, 30266827.
Velasco, S., Kedaigle, A. J., Simmons, S. K., Nash, A., Rocha, M., Quadrato, G., (2019). Individual brain organoids reproducibly form cell diversity of the human cerebral cortex., Nature, 570, 523–527. 10.1038/s41586-019-1289-x, 31168097.
Wang, L., Hou, S., Han, Y. G., (2016). Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex., Nat. Neurosci., 19, 888–896. 10.1038/nn.4307, 27214567.
Wang, X., Tsai, J. W., LaMonica, B., Kriegstein, A. R., (2011). A new subtype of progenitor cell in the mouse embryonic neocortex., Nat. Neurosci., 14, 555–561. 10.1038/nn.2807, 21478886.
Watanabe, M., Buth, J. E., Vishlaghi, N., de la Torre-Ubieta, L., Taxidis, J., Khakh, B. S., (2017). Self-Organized cerebral organoids with human-specific features predict effective drugs to combat Zika virus infection., Cell Rep., 21, 517–532. 10.1016/j.celrep.2017.09.047, 29020636.
Wells, M. F., Salick, M. R., Wiskow, O., Ho, D. J., Worringer, K. A., Ihry, R. J., (2016). Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection., Cell Stem Cell, 19, 703–708. 10.1016/j.stem.2016.11.011, 27912091.
Wilsch-Bräuninger, M., Florio, M., Huttner, W. B., (2016). Neocortex expansion in development and evolution - from cell biology to single genes., Curr. Opin. Neurobiol., 39, 122–132. 10.1016/j.conb.2016.05.004, 27258840.
Wilsch-Bräuninger, M., Peters, J., Paridaen, J. T., Huttner, W. B., (2012). Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination., Development, 139, 95–105. 10.1242/Dev.069294, 22096071.
Woodhams, P. L., Basco, E., Hajos, F., Csillag, A., Balazs, R., (1981). Radial glia in the developing mouse cerebral cortex and hippocampus., Anat. Embryol., 163, 331–343. 10.1007/bf00315709.
Wu, K. Y., Zuo, G. L., Li, X. F., Ye, Q., Deng, Y. Q., Huang, X. Y., (2016). Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice., Cell Res., 26, 645–654. 10.1038/cr.2016.58, 27174054.
Wu, S. X., Goebbels, S., Nakamura, K., Nakamura, K., Kometani, K., Minato, N., (2005). Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone., Proc. Natl. Acad. Sci. U.S.A., 102, 17172–17177. 10.1073/pnas.0508560102, 16284248.
Xu, M., Lee, E. M., Wen, Z., Cheng, Y., Huang, W. K., Qian, X., (2016). Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen., Nat. Med., 22, 1101–1107. 10.1038/nm.4184, 27571349.
Yu, T. W., Mochida, G. H., Tischfield, D. J., Sgaier, S. K., Flores-Sarnat, L., Sergi, C. M., (2010). Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture., Nat. Genet., 42, 1015–1020. 10.1038/ng.683, 20890278.
Zecevic, N., (2004). Specific characteristic of radial glia in the human fetal telencephalon., Glia, 48, 27–35. 10.1002/glia.20044, 15326612.
Zhou, T., Tan, L., Cederquist, G. Y., Fan, Y., Hartley, B. J., Mukherjee, S., (2017). High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain., Cell Stem Cell, 21, 274–283.e5. 10.1016/j.stem.2017.06.017, 28736217.
Zhou, Z. W., Tapias, A., Bruhn, C., Gruber, R., Sukchev, M., Wang, Z. Q., (2013). DNA damage response in microcephaly development of MCPH1 mouse model., DNA Repair, 12, 645–655. 10.1016/j.dnarep.2013.04.017, 23683352.