This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Henry, Théo, et al. "Assessment of atomic layer deposited TiO2 photocatalytic self-cleaning by quartz crystal microbalance." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 38.4 (2020): 043404. and may be found at https://avs.scitation.org/doi/10.1116/6.0000198. For Creative Commons licensed material, please use: “Copyright (year) Author(s)." This article is distributed under a Creative Commons Attribution (CC BY) License.
All documents in ORBi are protected by a user license.
[en] The self-cleaning properties emerging from photocatalytic effects consist in the elimination of an organic contamination layer by light-induced redox reactions. Quartz crystal microbalances (QCMs), monitoring the contaminant mass loss under UV illumination, were used to investigate this effect and its efficiency. A new setup dedicated to such purpose is introduced along with the results of a self-cleaning experiment performed with a 20-nm TiO2 thin film coated on a QCM by atomic layer deposition. In particular, a 10-nm paraffin oil thin film deposited under vacuum is shown to be degraded down to its complete removal according to a zeroth order photocatalytic reaction. Finally, the experimental opportunities offered by the new setup, such as a controlled environment composition, are presented.
Research Center/Unit :
Surface Micro & Nano Engineering Laboratory, Centre Spatial de Liège (CSL), Space Sciences, Technologies and Astrophysics Research (STAR) Institute, University of Liège, Avenue du Pré-Aily, Liege Science Park, B29 4031 Angleur, Belgium Thales Research & Technology France, Campus Polytechnique, 1 avenue Augustin Fresnel, 91767 Palaiseau Cedex, France Thales Alenia Space, 5 Allée des Gabins BP99, 06156 Cannes La Bocca Cedex, France
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Henry, Théo ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, and W. Gernjak, Catal. Today 147, 1 (2009). 10.1016/j.cattod.2009.06.018
J. Zhao and X. Yang, Build. Environ. 38, 645 (2003). 10.1016/S0360-1323(02)00212-3
A. H. Mamaghani, F. Haghighat, and C.-S. Lee, Appl. Catal. B Environ. 203, 247 (2017). 10.1016/j.apcatb.2016.10.037
J. Peral, X. Domènech, and D. F. Ollis, J. Chem. Technol. Biotechnol. 70, 117 (1997). 10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F
Z. Huang, P.-C. Maness, D. M. Blake, E. J. Wolfrum, S. L. Smolinski, and W. A. Jacoby, J. Photochem. Photobiol. A 130, 163 (2000). 10.1016/S1010-6030(99)00205-1
R. Fagan, D. E. McCormack, D. D. Dionysiou, and S. C. Pillai, Mater. Sci. Semicond. Proc. 42, 2 (2016). 10.1016/j.mssp.2015.07.052
S. Banerjee, D. D. Dionysiou, and S. C. Pillai, Appl. Catal. B Environ. 176-177, 396 (2015). 10.1016/j.apcatb.2015.03.058
A. Mills, S. Hodgen, and S. K. Lee, Res. Chem. Intermed. 31, 295 (2005). 10.1163/1568567053956644
L. Zhang, R. Dillert, D. Bahnemann, and M. Vormoor, Energy Environ. Sci. 5, 7491 (2012). 10.1039/c2ee03390a
Y. Nosaka and A. Y. Nosaka, Chem. Rev. 117, 11302 (2017). 10.1021/acs.chemrev.7b00161
M. R. Hoffmann, S. T. Martin, Wonyong Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). 10.1021/cr00033a004
A. Mills and S. Le Hunte, J. Photochem. Photobiol. A 108, 1 (1997). 10.1016/S1010-6030(97)00118-4
D. M. Blake, Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds From Water and Air (National Renewable Energy Laboratory, Golden, CO, 1999).
D. M. Blake, Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds From Water and Air (National Renewable Energy Laboratory, Golden, CO, 2001).
D. S. Bhatkhande, V. G. Pangarkar, and A. A. Beenackers, J. Chem. Technol. Biotechnol. 77, 102 (2002). 10.1002/jctb.532
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Nature 388, 431 (1997). 10.1038/41233
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mater. 10, 135 (1998). 10.1002/(SICI)1521-4095(199801)10:2<135::AID-ADMA135>3.0.CO;2-M
M. Miyauchi, A. Nakajima, T. Watanabe, and K. Hashimoto, Chem. Mater. 14, 2812 (2002). 10.1021/cm020076p
ISO 27448-Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)-Test Method for Self-Cleaning Performance of Semiconducting Photocatalytic Materials-Measurement of Water Contact Angle (International Organization for Standardization, Geneva, Switzerland, 2009).
Z. Yang and C. Zhang, J. Mol. Catal. A-Chem. 302, 107 (2009). 10.1016/j.molcata.2008.12.001
Z. Yang, J. Yan, C. Zhang, and S. Luo, Colloid. Surf. B 87, 187 (2011). 10.1016/j.colsurfb.2011.05.022
H. Hidaka, H. Honjo, S. Horikoshi, and N. Serpone, New J. Chem. 27, 1371 (2003). 10.1039/b301211p
I. Iñarritu, E. Torres, A. Topete, and J. Campos-Terán, J. Colloid Interface Sci. 506, 36 (2017). 10.1016/j.jcis.2017.07.015
M. Miller, W. E. Robinson, A. R. Oliveira, N. Heidary, N. Kornienko, J. Warnan, I. A. C. Pereira, and E. Reisner, Angew. Chem. Int. Ed. 58, 4601 (2019). 10.1002/anie.201814419
Z. Yang and C. Zhang, Catal. Commun. 10, 351 (2008). 10.1016/j.catcom.2008.09.020
Y. Nakamura, Y. Katou, and S. Rengakuji, Electrochemistry 72, 408 (2004). 10.5796/electrochemistry.72.408
P. Chin, C. S. Grant, and D. F. Ollis, Appl. Catal. B Environ. 87, 220 (2009). 10.1016/j.apcatb.2008.09.020
T. Abe and H. Kato, J. Micromech. Microeng. 19, 094019 (2009). 10.1088/0960-1317/19/9/094019
W. Qiang, L. Wei, W. Shaodan, and B. Yu, Appl. Surf. Sci. 347, 755 (2015). 10.1016/j.apsusc.2015.04.132
J. Joo, D. Lee, M. Yoo, and S. Jeon, Sensor. Actuat. B-Chem. 138, 485 (2009). 10.1016/j.snb.2009.03.017
F. Rupp et al., J. Dent. Res. 91, 104 (2012). 10.1177/0022034511424901
T. Kallio, S. Alajoki, V. Pore, M. Ritala, J. Laine, M. Leskelä, and P. Stenius, Colloid. Surf. A 291, 162 (2006). 10.1016/j.colsurfa.2006.06.044
F. Rupp et al., Acta Biomater. 6, 4566 (2010). 10.1016/j.actbio.2010.06.021
Y. Wu, J. Geis-Gerstorfer, L. Scheideler, and F. Rupp, Biofouling 32, 583 (2016). 10.1080/08927014.2016.1170118
R. Norman Jones, Chem. Rev. 32, 1 (1943). 10.1021/cr60101a001
V. Miikkulainen, M. Leskelä, M. Ritala, and R. L. Puurunen, J. Appl. Phys. 113, 021301 (2013). 10.1063/1.4757907
J. Bachmann, Atomic Layer Deposition in Energy Conversion Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2017).
S. M. George, Chem. Rev. 110, 111 (2010). 10.1021/cr900056b
Kurt J. Lesker Company, Material Deposition Chart, see: https://www.Lesker.Com/Newweb/Deposition_materials/Materialdepositionchart.Cfm?Pgid=0.
C. Lu and O. Lewis, J. Appl. Phys. 43, 4385 (1972). 10.1063/1.1660931
C. Lu, J. Vac. Sci. Technol. 12, 578 (1975). 10.1116/1.568614
A. Wajid, Rev. Sci. Instrum. 62, 2026 (1991). 10.1063/1.1142359
E. Benes, J. Appl. Phys. 56, 608 (1984). 10.1063/1.333990
K. H. Behrndt, J. Vac. Sci. Technol. 8, 622 (1971). 10.1116/1.1316376
X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007). 10.1021/cr0500535
T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978). 10.1002/jrs.1250070606
A. H. Al-Bayati, K. G. Orrman-Rossiter, J. A. van den Berg, and D. G. Armour, Surf. Sci. Lett. 241, A5 (1991). 10.1016/0167-2584(91)91058-5
G. E. Jellison and F. A. Modine, Appl. Phys. Lett. 69, 371 (1996). 10.1063/1.118064
G. E. Jellison and F. A. Modine, Appl. Phys. Lett. 69, 2137 (1996). 10.1063/1.118155
H. Tang, H. Berger, P. E. Schmid, and F. Lévy, Solid State Commun. 92, 267 (1994). 10.1016/0038-1098(94)90889-3
D. O. Scanlon et al., Nat. Mater. 12, 798 (2013). 10.1038/nmat3697
H. Tang, K. Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, J. Appl. Phys. 75, 2042 (1994). 10.1063/1.356306
T. Jones and T. A. Egerton, in Kirk-Othmer Encyclopedia of Chemical Technology, edited by John Wiley & Sons, Inc. (Wiley, Hoboken, NJ, 2012).
D. A. Wallace, S. A. Wallace, and K. W. Rogers, in Optical Systems Contamination and Degradation, edited by P. T. C. Chen, W. E. McClintock, and G. J. Rottman (International Society for Optics and Photonics, San Diego, CA, 1998), Vol. 3427, pp. 76-87, available at https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3427/1/First-tests-of-an-extremely-high-mass-sensitivity - miniature/10.1117/12.328522.short?SSO=1.
L. H. Goodman, E. S. Bililign, B. W. Keller, S. G. Kenny, and J. Krim, J. Appl. Phys. 124, 024502 (2018). 10.1063/1.5029487
Y. Zong, F. Xu, X. Su, and W. Knoll, J. Appl. Phys. 103, 104503 (2008). 10.1063/1.2924409
T. Kawasaki, T. Mochida, J. Katada, and Y. Okahata, Anal. Sci. 25, 1069 (2009). 10.2116/analsci.25.1069
A. Fomin, M. Poliak, V. Tsionsky, S. Cheskis, and I. Rahinov, Sensor. Actuat. B-Chem. 202, 861 (2014). 10.1016/j.snb.2014.05.085
T. Minabe, D. A. Tryk, P. Sawunyama, Y. Kikuchi, K. Hashimoto, and A. Fujishima, J. Photochem. Photobiol. A 137, 53 (2000). 10.1016/S1010-6030(00)00350-6
Temperature Coefficient of Maxtek Monitor Crystals (Inficon, 2005), available at https://products.inficon.com/getattachment.axd/?attaName=d2c92a2a-c4ab-49fa-8e55-45b59bbc8f7b.