Reliance of deep-sea benthic macrofauna on ice-derived organic matter highlighted by multiple trophic markers during spring in Baffin Bay, Canadian Arctic
Yunda-Guarin, Gustavo; Brown, Thomas A.; Michel, Loïcet al.
2020 • In Elementa: Science of the Anthropocene, 8 (1), p. 047
[en] Benthic organisms depend primarily on seasonal pulses of organic matter from primary producers. In the Arctic, declines in sea ice due to warming climate could lead to changes in this food supply with as yet unknown effects on benthic trophic dynamics. Benthic consumer diets and food web structure were studied in a seasonally ice-covered region of Baffin Bay during spring 2016 at stations ranging in depth from 199 to 2,111 m. We used a novel combination of highly branched isoprenoid (HBI) lipid biomarkers and stable isotope ratios (δ13C, δ15N) to better understand the relationship between the availability of carbon sources in spring on the seafloor and their assimilation and transfer within the benthic food web. Organic carbon from sea ice (sympagic carbon [SC]) was an important food source for benthic consumers. The lipid biomarker analyses revealed a high relative contribution of SC in sediments (mean SC% ± standard deviation [SD] = 86% ± 16.0, n = 17) and in benthic consumer tissues (mean SC% ± SD = 78% ± 19.7, n = 159). We also detected an effect of sea-ice concentration on the relative contribution of SC in sediment and in benthic consumers. Cluster analysis separated the study region into three different zones according to the relative proportions of SC assimilated by benthic macrofauna. We observed variation of the benthic food web between zones, with increases in the width of the ecological niche in zones with less sea-ice concentration, indicating greater diversity of carbon sources assimilated by consumers. In zones with greater sea-ice concentration, the higher availability of SC increased the ecological role that primary consumers play in driving a stronger transfer of nutrients to higher trophic levels. Based on our results, SC is an important energy source for Arctic deep-sea benthos in Baffin Bay, such that changes in spring sea-ice phenology could alter benthic food-web structure.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
Michel, Loïc ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Saint-Béat, Blanche
Amiraux, Rémi
Nozais, Christian
Archambault, Philippe
Language :
English
Title :
Reliance of deep-sea benthic macrofauna on ice-derived organic matter highlighted by multiple trophic markers during spring in Baffin Bay, Canadian Arctic
ANR - Agence Nationale de la Recherche CNES - Centre National d'Études Spatiales IPEV - Institut Polaire Français Paul Émile Victor Fondation TotalEnergies ArcticNet CSA LEFE French Arctic Initiative
Arctic Monitoring and Assessment Programme. 2018. Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis Strait Region. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. Xvi þ 354 pp.
Amaro, T, Danovaro, R, Matsui, Y, Rastelli, E, Wolff, GA, Nomaki, H. 2019. Possible links between holothurian lipid compositions and differences in organic matter (OM) supply at the western Pacific abyssal plains. Deep Res Part I 152. DOI: http://dx.doi.org/10.1016/j.dsr.2019.103085.
Amiraux, R, Belt, ST, Vaultier, F, Galindo, V, Gosselin, M, Bonin, P, Rontani, JF. 2017. Monitoring photooxidative and salinity-induced bacterial stress in the Canadian Arctic using specific lipid tracers. Mar Chem 194: 89–99. DOI: http://dx.doi.org/10.1016/j.marchem.2017.05.006.
Araújo, MS, Bolnick, DI, Layman, CA. 2011. The ecological causes of individual specialisation. Ecol Lett 14(9): 948–958. DOI: http://dx.doi.org/10.1111/j.1461-0248.2011.01662.x.
Belt, ST, Brown, TA, Rodriguez, AN, Sanz, PC, Tonkin, A, Ingle, R. 2012. A reproducible method for the extraction, identification and quantification of the Arctic sea ice proxy IP25 from marine sediments. Anal Methods 4(3): 705–713. DOI: http://dx.doi.org/10.1039/c2ay05728j.
Belt, ST. 2018. Source-specific biomarkers as proxies for Arctic and Antarctic sea ice. Org Geochem 125: 277–298. DOI: http://dx.doi.org/10.1016/j.orggeochem.2018.10.002.
Belt, ST, Massé, G, Rowland, SJ, Poulin, M, Michel, C, LeBlanc, B. 2007. A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38(1): 16–27. DOI: http://dx.doi.org/10.1016/j.orggeochem.2006.09.013.
Belt, ST, Smik, L, Köseo, D, Knies, J, Husum, K. 2019. A novel biomarker-based proxy for the spring phytoplankton bloom in Arctic and sub-arctic settings—HBI T25. Earth Planet Sci Lett 523. DOI: http://dx.doi.org/10.1016/j.epsl.2019.06.038.
Bi, H, Zhang, Z, Wang, Y, Xu, X, Liang, Y, Huang, J, Liu, Y, Fu, M. 2019. Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017. Cryosph 13: 1025–1042.
Bluhm, BA, Ambrose, WG, Bergmann, M, Clough, LM, Gebruk, AV, Hasemann, C, Iken, K, Klages, M, MacDonald, IR, Renaud, PE, Schewe, I, Soltwedel, T, Włodarska-Kowalczuk, M. 2011. Diversity of the arctic deep-sea benthos. Mar Biodivers 41(1): 87–107. DOI: http://dx.doi.org/10.1007/s12526-010-0078-4.
Boetius, A, Albrecht, S, Bakker, K, Bienhold, C, Felden, J, Fernández-Méndez, M, Hendricks, S, Katlein, C, Lalande, C, Krumpen, T, Nicolaus, M, Peeken, I, Rabe, B, Rogacheva, A, Rybakova, E, Somavilla, R, Wenzhöfer, F, Polarstern, RV. 2013. Export of algal biomass from the melting arctic sea ice. Science 339(6126): 1430–1432. DOI: http://dx.doi.org/10.1126/science.1231346.
Brown, TA, Assmy, P, Hop, H, Wold, A, Belt, ST. 2017a. Transfer of ice algae carbon to ice-associated amphipods in the high-Arctic pack ice environment. J Plankton Res 39(4): 664–674. DOI: http://dx.doi.org/10.1093/plankt/fbx030.
Brown, TA, Belt, ST. 2012. Identification of the sea ice diatom biomarker IP25 in Arctic benthic macrofauna: Direct evidence for a sea ice diatom diet in Arctic heterotrophs. Polar Biol 35(1): 131–137. DOI: http://dx.doi.org/10.1007/s00300-011-1045-7.
Brown, TA, Belt, ST. 2016. Novel tri- and tetra-unsaturated highly branched isoprenoid (HBI) alkenes from the marine diatom Pleurosigma inter-medium. Org Geochem 91: 120–122. Elsevier Ltd. DOI: http://dx.doi.org/10.1016/j.orggeochem.2015.11.008.
Brown, TA, Belt, ST. 2017. Biomarker-based H-Print quantifies the composition of mixed sympagic and pelagic algae consumed by Artemia sp. J Exp Mar Bio Ecol 488: 32–37. DOI: http://dx.doi.org/10.1016/j.jembe.2016.12.007.
Brown, TA, Belt, ST, Gosselin, M, Levasseur, M, Poulin, M, Mundy, CJ. 2016. Quantitative estimates of sinking sea ice particulate organic carbon based on the biomarker IP25. Mar Ecol Prog Ser 546: 17–29. DOI: http://dx.doi.org/10.3354/meps11668.
Brown, TA, Belt, ST, Piepenburg, D. 2012. Evidence for a pan-Arctic sea-ice diatom diet in Strongylocentrotus spp. Polar Biol 35(8): 1281–1287. DOI: http://dx.doi.org/10.1007/s00300-012-1164-9.
Brown, TA, Chrystal, E, Ferguson, SH, Yurkowski, DJ, Watt, C, Hussey, NE, Kelley, TC, Belt, ST. 2017b. Coupled changes between the H-Print biomarker and d15 N indicates a variable sea ice carbon contribution to the diet of Cumberland Sound beluga whales. Limnol Oceanogr 62(4): 1606–1619. DOI: http://dx.doi.org/10.1002/lno.10520.
Brown, TA, Galicia, MP, Thiemann, GW, Belt, ST, Yurkowski, DJ, Dyck, MG. 2018. High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue. PLoS One 13(1): 1–13. DOI: http://dx.doi.org/10.1371/journal.pone.0191631.
Brown, TA, Hegseth, EN, Belt, ST. 2013. A biomarker-based investigation of the mid-winter ecosystem in Rijpfjorden, Svalbard. Polar Biol 38(1): 37–50. DOI: http://dx.doi.org/10.1007/s00300-013-1352-2.
Brown, TA, Rad-Menéndez, C, Ray, JL, Skaar, KS, Thomas, N, Ruiz-Gonzales, C, Leu, E. 2020. Influence of nutrient availability on Arctic sea ice diatom HBI lipid synthesis. Org Geochem 141: 103977. https://doi.org/10.1016/j.orggeochem.2020.103977.
Brown, TA, Yurkowski, DJ, Ferguson, SH, Alexander, C, Belt, ST. 2014. H-Print: A new chemical fingerprinting approach for distinguishing primary production sources in Arctic ecosystems. Environ Chem Lett 12(3): 387–392. DOI: http://dx.doi.org/10.1007/s10311-014-0459-1.
Budge, SM, Wooller, MJ, Springer, AM, Iverson, SJ, McRoy, CP, Divoky, GJ. 2008. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia 157: 117–129. DOI: http://dx.doi.org/10.1007/s00442-008-1053-7.
Calizza, E, Careddu, G, Sporta Caputi, S, Rossi, L, Costantini, ML. 2018. Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS One 13(3): 1–17. DOI: http://dx.doi.org/10.1371/journal.pone.0194796.
Cavalieri, DJ, Parkinson, CL, Gloersen, P, Zwally, HJ. 1996. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1, Boulder, Color., USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. DOI: https://doi.org/10.5067/8GQ8LZQVL0VL.
Collin, A, Archambault, P, Long, B. 2011. Predicting species diversity of benthic communities within turbid nearshore using full-waveform bathymetric LiDAR and machine learners. PLoS One 6(6). DOI: http://dx.doi.org/10.1371/journal.pone.0021265.
Degen, R, Vedenin, A, Gusky, M, Boetius, A, Brey, T. 2015. Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean. Polar Res 34(1): 24008. DOI: http://dx.doi.org/10.3402/polar.v34.24008.
Divine, LM, Iken, K, Bluhm, BA. 2015. Regional benthic food web structure on the Alaska Beaufort Sea shelf. Mar Ecol Prog Ser 531: 15–32. DOI: http://dx.doi.org/10.3354/meps11340.
Environment and Climate Change Canada. 2019. Canadian Environmental Sustainability Indicators: Sea ice in Canada. Available at: www.canada.ca/en/environment-climate-change/services/environmental-indicators/sea-ice.html.
Feder, HM, Iken, K, Blanchard, AL, Jewett, SC, Schonberg, S. 2011. Benthic food web structure in the southeastern Chukchi Sea: An assessment using d13C and d15 N analyses. Polar Biol 34(4): 521–532. DOI: http://dx.doi.org/10.1007/s00300-010-0906-9.
Findlay, HS, Gibson, G, Kedra, M, Morata, N, Orchowska, M, Pavlov, AK, Reigstad, M, Silyakova, A, Tremblay, JÉ, Walczowski, W, Weydmann, A, Logvinova, C. 2015. Responses in Arctic marine carbon cycle processes: Conceptual scenarios and implications for ecosystem function. Polar Res 34(2015). DOI: http://dx.doi.org/10.3402/polar.v34.24252.
Frey, KE, Comiso, JC, Cooper, LW, Grebmeier, JM, Stock, LV. 2018. Arctic Ocean primary productivity: The response of marine algae to climate warming and sea ice decline. Arctic Report Card 2018. Available at https://www.arctic.noaa.gov/Report-Card.
Gage, JD. 2003. Food inputs, utilization, carbon flow and energetic, in Tyler, PA ed., Ecosystems of the deep oceans. New York, NY: Elsevier: 313–380 (Ecosystems of the World).
Glover, AG, Gooday, AJ, Bailey, DM, Billett, DSM, Chevaldonné, P, Colaço, A, Copley, J, Cuvelier, D, Desbruyères, D, Kalogeropoulou, V, Klages, M, Lampadariou, N, Lejeusne, C, Mestre, NC, Paterson, GLJ, Perez, T, Ruhl, H, Sarrazin, J, Soltwedel, T, Soto, EH, Thatje, S, Tselepides, A, Van Gaever, S, Vanreusel, A. 2010. Temporal change in deep-sea benthic ecosystems. A review of the evidence from recent time-series studies. Adv Mar Biol 58(C): 1–95. DOI: http://dx.doi.org/10.1016/B978-0-12-381015-1.00001-0.
Gosselin, M, Levasseur, M, Wheeler, PA, Horner, RA, Booth, BC. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Res Part II 44(8): 1623–1644.
Goutte, A, Cherel, Y, Houssais, MN, Klein, V, Ozouf-Costaz, C, Raccurt, M, Robineau, C, Massé, G. 2013. Diatom-specific highly branched isoprenoids as biomarkers in Antarctic consumers. PLoS One 8(2). DOI: http://dx.doi.org/10.1371/journal.pone.0056504.
Gradinger, R, Bluhm, B. 2020. First Arctic sea ice meiofauna food web analysis based on abundance, biomass and stable isotope ratios of sea ice metazoan fauna from near-shore Arctic fast ice. Mar Ecol Prog Ser 634: 29–43. DOI: http://dx.doi.org/10.3354/meps13170.
Grebmeier, JM, Barry, JP. 1991. The influence of oceanographic processes on pelagic-benthic coupling in polar regions: A benthic perspective. J Mar Syst 2(3–4): 495–518. DOI: http://dx.doi.org/10.1016/0924-7963(91)90049-Z.
Grebmeier, JM, Frey, KE, Cooper, LW, Kedra, M. 2018. Trends in benthic macrofaunal populations, seasonal sea ice persistence, and bottom water temperatures in the Bering Strait region. Oceanography 31(2):136–151. DOI: https://doi.org/10.5670/oceanog.2018.224.
Griffiths, JR, Kadin, M, Nascimento, FJA, Tamelander, T, Törnroos, A, Bonaglia, S, Bonsdorff, E, Brüchert, V, Gårdmark, A, Järnström, M, Kotta, J, Lindegren, M, Nordström, MC, Norkko, A, Olsson, J, Weigel, B, Žydelis, R, Blenckner, T, Niiranen, S, Winder, M. 2017. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob Chang Biol 23(6): 2179–2196. DOI: http://dx.doi.org/10.1111/gcb.13642.
Hobson, KA, Fisk, A, Karnovsky, N, Holst, M, Gagnon, J-M, Fortier, M. 2002. A stable isotope (d13C, d15 N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res Part II 49(22): 5131–5150.
Iken, K, Bluhm, BA, Gradinger, R. 2005. Food web structure in the high Arctic Canada Basin: Evidence from d13C and d15 N analysis. Polar Biol 28(3): 238–249. DOI: http://dx.doi.org/10.1007/s00300-004-0669-2.
Iken, K, Brey, T, Wand, U, Voigt, J, Junghans, P. 2001. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog Oceanogr 50(1–4): 383–405. DOI: http://dx.doi.org/10.1016/S0079-6611(01)00062-3.
Jackson, AL, Inger, R, Parnell, AC, Bearhop, S. 2011. Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80(3): 595–602. DOI: http://dx.doi.org/10.1111/j.1365-2656.2011.01806.x.
Jeffreys, RM, Burke, C, Jamieson, AJ, Narayanaswamy, BE, Ruhl, HA, Smith, KL, Witte, U. 2013. Feeding preferences of abyssal macrofauna inferred from in situ pulse chase experiments. PLoS One 8(11): 1–15. DOI: http://dx.doi.org/10.1371/journal.pone.0080510.
Karlson, AML, Gorokhova, E, Elmgren, R. 2014. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders. PLoS One 9(8). DOI: http://dx.doi.org/10.1371/journal.pone.0104460.
Kedra, M, Moritz, C, Choy, ES, David, C, Degen, R, Duerksen, S, Ellingsen, I, Górska, B, Grebmeier, JM, Kirievskaya, D, van Oevelen, D, Piwosz, K, Samuelsen, A, W esławsk, JM. 2015. Status and trends in the structure of Arctic benthic food webs. Polar Res 34(2015). DOI: http://dx.doi.org/10.3402/polar.v34.23775.
Kelly, JR, Scheibling, RE. 2012. Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446: 1–22. DOI: http://dx.doi.org/10.3354/meps09559.
Kim, JH, Gal, JK, Jun, SY, Smik, L, Kim, D, Belt, ST, Park, K, Shin, KH, Nam, S Il. 2019. Reconstructing spring sea ice concentration in the Chukchi Sea over recent centuries: Insights into the application of the PIP25 index. Environ Res Lett 14(12). DOI: http://dx.doi.org/10.1088/1748-9326/ab4b6e.
Koch, CW, Cooper, LW, Grebmeier, JM, Frey, K, Brown, TA. 2020a. Ice algae resource utilization by benthic macro- and megafaunal communities on the Pacific Arctic shelf determined through lipid biomarker analysis. Mar Ecol Prog Ser 651: 23–43. DOI: http://dx.doi.org/10.3354/meps13476.
Koch, CW, Cooper, LW, Lalande, C, Brown, TA, Frey, KE, Grebmeier, JM. 2020b. Seasonal and latitudinal variations in sea ice algae deposition in the northern Bering and Chukchi seas determined by algal biomarkers. PLoS One 15. DOI: http://dx.doi.org/10.1371/journal.pone.0231178.
Kohlbach, D, Ferguson, SH, Brown, TA, Michel, C. 2019. Landfast sea ice-benthic coupling during spring and potential impacts of system changes on food web dynamics in Eclipse Sound, Canadian Arctic. Mar Ecol Prog Ser 627: 33–48. DOI: http://dx.doi.org/10.3354/meps13071.
Layman, CA, Allgeier, JE. 2012. Characterizing trophic ecology of generalist consumers: A case study of the invasive lionfish in the Bahamas. Mar Ecol Prog Ser 448: 131–141. DOI: http://dx.doi.org/10.3354/meps09511.
Layman, CA, Arrington, DA, Montaña, CG, Post, DM. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 89(8): 2358–2359. DOI: http://dx.doi.org/10.1890/08-0167.1.
Lehmann, N, Kienast, M, Granger, J, Bourbonnais, A, Altabet, MA, Tremblay, J. 2019. Remote western Arctic nutrients fuel remineralization in deep Baffin Bay. Glob Biogeochem Cy 33(6): 649–667. DOI: http://dx.doi.org/10.1029/2018GB006134.
Leu, E, Brown, TA, Graeve, M, Wiktor, J, Hoppe, JM, Chierici, M, Fransson, A, Verbiest, S, Kvernvik, AC, Greenacre, MJ. 2020. Spatial and temporal variability of ice algal trophic markers—with recommendatios about their application. Mar Sci Eng 8(9), 676. doi:10.3390/jmse8090676.
Leu, E, Søreide, JE, Hessen, DO, Falk-Petersen, S, Berge, J. 2011. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog Oceanogr 90(1–4): 18–32. DOI: http://dx.doi.org/10.1016/j.pocean.2011.02.004.
Link, H, Archambault, P, Tamelander, T, Renaud, PE, Piepenburg, D. 2011. Spring-to-summer changes and regional variability of benthic processes in the western Canadian Arctic. Polar Biol 34(12): 2025–2038. DOI: http://dx.doi.org/10.1007/s00300-011-1046-6.
Macko, SA, Estep, MLF. 1984. Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Org Geochem 6(C): 787–790. DOI: http://dx.doi.org/10.1016/0146-6380(84)90100-1.
Mäkelä, A, Witte, U, Archambault, P. 2017. Ice algae versus phytoplankton: Resource utilization by Arctic deep sea macroinfauna revealed through isotope labelling experiments. Mar Ecol Prog Ser 572: 1–18. DOI: http://dx.doi.org/10.3354/meps12157.
McCutchan, JH, Lewis, WM, Kendall, C, McGrath, CC. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 111(2): 416. DOI: http://dx.doi.org/https://doi.org/10.1034/j.1600-0706.2003.12098.x.
McTigue, ND, Dunton, KH. 2014. Trophodynamics and organic matter assimilation pathways in the northeast Chukchi Sea, Alaska. Deep Res Part II 102: 84–96. Elsevier. DOI: http://dx.doi.org/10.1016/j.dsr2.2013.07.016.
Michel, LN, Danis, B, Dubois, P, Eleaume, M, Fournier, J, Gallut, C, Jane, P, Lepoint, G. 2019. Increased sea ice cover alters food web structure in East Antarctica. Sci Rep 9(1). DOI: http://dx.doi.org/10.1038/s41598-019-44605-5.
Michel, LN, David, B, Dubois, P, Lepoint, G, De Ridder, C. 2016. Trophic plasticity of Antarctic echinoids under contrasted environmental conditions. Polar Biol 39(5): 913–923. DOI: http://dx.doi.org/10.1007/s00300-015-1873-y.
Müller, J, Wagner, A, Fahl, K, Stein, R, Prange, M, Lohmann, G. 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combined biomarker and numerical modelling approach. Earth Planet Sci Lett 306(3–4): 137–148. DOI: http://dx.doi.org/10.1016/j.epsl.2011.04.011.
Navarro-Rodriguez, A, Belt, ST, Knies, J, Brown, TA. 2013. Mapping recent sea ice conditions in the Barents Sea using the proxy biomarker IP25: Implications for palaeo sea ice reconstructions. Quat Sci Rev 79: 26–39. Elsevier Ltd. DOI: http://dx.doi.org/10.1016/j.quascirev.2012.11.025.
Norkko, A, Thrush, SF, Cummings, VJ, Gibbs, MM, Andrew, NL, Norkko, J, Schwarz, AM. 2007. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88(11): 2810–2820. DOI: http://dx.doi.org/10.1890/06-1396.1.
North, CA, Lovvorn, JR, Kolts, JM, Brooks, ML, Cooper, LW, Grebmeier, JM. 2014. Deposit-feeder diets in the Bering Sea: Potential effects of climatic loss of sea ice-related microalgal blooms. Ecol Appl 24(6): 1525–1542. DOI: http://dx.doi.org/10.1890/130486.1.
Nozais, C, Gosselin, M, Michel, C, Tita, G. 2001. Abundance, biomass, composition and grazing impact of the sea-ice meiofauna in the North water, Northern Baffin Bay. Mar Ecol Prog Ser 217: 235–250. DOI: http://dx.doi.org/10.3354/meps217235.
Olivier, F, Gaillard, B, Thébault, J, Meziane, T, Tremblay, R, Dumont, D, Bélanger, S, Gosselin, M, Jolivet, A, Chauvaud, L, Martel, AL, Rysgaard, S, Olivier, A-H, Pettré, J, Mars, J, Gerber, S, Archambault, P. 2020. Shells of the bivalve Astarte moerchi give new evidence of a strong pelagic-benthic coupling shift occurring since the late 1970s in the North Water polynya. Phil Trans R Soc A. 378: 20190353. DOI: http://dx.doi.org/10.1098/rsta.2019.0353.
Piepenburg, D. 2005. Recent research on Arctic benthos: Common notions need to be revised. Polar Biol 28(10): 733–755. DOI: http://dx.doi.org/10.1007/s00300-005-0013-5.
Post, E. 2017. Implications of earlier sea ice melt for phenological cascades in arctic marine food webs. Food Webs 13: 60–66. Elsevier Inc. DOI: http://dx.doi.org/10.1016/j.fooweb.2016.11.002.
R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.
Reid, WDK, Sweeting, CJ, Wigham, BD, McGill, RAR, Polunin, NVC. 2016. Isotopic niche variability in macroconsumers of the East Scotia Ridge (Southern Ocean) hydrothermal vents: What more can we learn from an ellipse? Mar Ecol Prog Ser 542: 13–24. DOI: http://dx.doi.org/10.3354/meps11571.
Renaud, PE, Løkken, TS, Jørgensen, LL, Berge, J, Johnson, BJ. 2015. Macroalgal detritus and food-web subsidies along an Arctic fjord depth-gradient. Front Mar Sci 2: 1–15. DOI: http://dx.doi.org/10.3389/fmars.2015.00031.
Renaud, PE, Tessmann, M, Evenset, A, Christensen, GN. 2011. Benthic food-web structure of an arctic fjord (kongsfjorden, svalbard). Mar Biol Res 7(1): 13–26. DOI: http://dx.doi.org/10.1080/17451001003671597.
Riaux-Gobin, C, Klein, B. 1993. Microphytobenthic biomass measurement using HPLC and conventional pigment analysis, in Handbook in methods of aquatic microbial ecology. Lewis Publishers: 369–376. DOI: http://dx.doi.org/10.1201/9780203752746-43.
Ribeiro, S, Sejr, MK, Limoges, A, Heikkilä, M, Andersen, TJ, Tallberg, P, Weckström, K, Husum, K, Forwick, M, Dalsgaard, T, Massé, G, Seidenkrantz, M-S, Rysgaard, S. 2017. Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: Spatial distribution and implications for palaeoenvironmental studies. Ambio 46: 106–118. DOI: http://dx.doi.org/10.1007/s13280-016-0894-2.
Rontani, JF, Belt, ST. 2019. Photo- and autoxidation of unsaturated algal lipids in the marine environment: An overview of processes, their potential tracers, and limitations. Org Geochem 139. DOI: http://dx.doi.org/10.1016/j.orggeochem.2019.103941.
Rontani, JF, Belt, ST, Brown, TA, Amiraux, R, Gosselin, M, Vaultier, F, Mundy, CJ. 2016. Monitoring abiotic degradation in sinking versus suspended Arctic sea ice algae during a spring ice melt using specific lipid oxidation tracers. Org Geochem 98: 82–97. DOI: http://dx.doi.org/10.1016/j.orggeochem.2016.05.016.
Rontani, JF, Belt, ST, Brown, TA, Vaultier, F, Mundy, CJ. 2014. Sequential photo- and autoxidation of diatom lipids in Arctic sea ice. Org Geochem 77: 59–71. DOI: http://dx.doi.org/10.1016/j.orggeochem.2014.09.009.
Rontani, JF, Belt, ST, Vaultier, F, Brown, TA. 2011. Visible light induced photo-oxidation of highly branched isoprenoid (HBI) alkenes: Significant dependence on the number and nature of double bonds. Org Geochem 42(7): 812–822. DOI: http://dx.doi.org/10.1016/j.orggeochem.2011.04.013.
Rossi, L, Sporta Caputi, S, Calizza, E, Careddu, G, Oliverio, M, Schiaparelli, S, Costantini, ML. 2019. Antarctic food web architecture under varying dynamics of sea ice cover. Sci Rep 9(1): 1–13. Springer US. DOI: http://dx.doi.org/10.1038/s41598-019-48245-7.
Roy, V, Iken, K, Archambault, P. 2014. Environmental drivers of the Canadian Arctic megabenthic communities. PLoS One 9(7). DOI: http://dx.doi.org/10.1371/journal.pone.0100900.
Roy, V, Iken, K, Gosselin, M, Tremblay, JÉ, Bélanger, S, Archambault, P. 2015. Benthic faunal assimilation pathways and depth-related changes in food-web structure across the Canadian Arctic. Deep Res Part I Oceanogr Res Pap 102: 55–71. Elsevier. DOI: http://dx.doi.org/10.1016/j.dsr.2015.04.009.
Rybakova, E, Kremenetskaia, A, Vedenin, A, Boetius, A, Gebruk, A. 2019. Deep-sea megabenthos communities of the Eurasian Central Arctic are influenced by ice-cover and sea-ice algal falls. PLoS One 14(7): 1–27. DOI: http://dx.doi.org/10.1371/journal.pone.0211009.
Smik, L, Cabedo-Sanz, P, Belt, ST. 2016. Semi-quantitative estimates of paleo Arctic sea ice concentration based on source-specific highly branched isoprenoid alkenes: A further development of the PIP25 index. Org Geochem 92: 63–69. DOI: http://dx.doi.org/10.1016/j.orggeochem.2015.12.007.
Stasko, AD, Bluhm, BA, Reist, JD, Swanson, H, Power, M. 2018. Relationships between depth and d15 N of Arctic benthos vary among regions and trophic functional groups. Deep Res Part I 135: 56–64. Elsevier Ltd. DOI: http://dx.doi.org/10.1016/j.dsr.2018.03.010.
Stern, HL, Heide-Jørgensen, MP. 2003. Trends and variability of sea ice in Baffin Bay and Davis Strait, 1953–2001. Polar Res 22(1): 11–18. DOI: http://dx.doi.org/10.3402/polar.v22i1.6438.
Stoynova, V, Shanahan, TM, Hughen, KA, de Vernal, A. 2013. Insights into Circum-Arctic sea ice variability from molecular geochemistry. Quat Sci Rev 79: 63–73. DOI: http://dx.doi.org/10.1016/j.quascirev.2012.10.006.
Tamelander, T, Reigstad, M, Hop, H, Ratkova, T. 2009. Ice algal assemblages and vertical export of organic matter from sea ice in the Barents Sea and Nansen Basin (Arctic Ocean). Polar Biol 32(9): 1261–1273. DOI: http://dx.doi.org/10.1007/s00300-009-0622-5.
Tang, CCL, Ross, CK, Yao, T, Petrie, B, DeTracey, BM, Dunlap, E. 2004. The circulation, water masses and sea-ice of Baffin Bay. Prog Oceanogr 63(4): 183–228. DOI: http://dx.doi.org/10.1016/j.pocean.2004.09.005.
Tedesco, L, Vichi, M, Scoccimarro, E. 2019. Sea-ice algal phenology in a warmer Arctic. Sci Adv 5(5). DOI: http://dx.doi.org/10.1126/sciadv.aav4830.
Tremblay, JÉ, Hattori, H, Michel, C, Ringuette, M, Mei, ZP, Lovejoy, C, Fortier, L, Hobson, KA, Amiel, D, Cochran, K. 2006. Trophic structure and pathways of biogenic carbon flow in the eastern North Water Polynya. Prog Oceanogr 71(2–4): 402–425. DOI: http://dx.doi.org/10.1016/j.pocean.2006.10.006.
Van Oevelen, D, Bergmann, M, Soetaert, K, Bauerfeind, E, Hasemann, C, Klages, M, Schewe, I, Soltwedel, T, Budaeva, NE. 2011. Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep Res Part I 58(11): 1069–1083. Elsevier. DOI: http://dx.doi.org/10.1016/j.dsr.2011.08.002.
Vedenin, A, Gusky, M, Gebruk, A, Kremenetskaia, A, Rybakova, E, Boetius, A. 2018. Spatial distribution of benthic macrofauna in the Central Arctic Ocean. PLoS One 13(10). DOI: http://dx.doi.org/10.1371/journal.pone.0200121.
Volkman, JK, Barrett, SM, Dunstan, GA. 1994. C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org Geochem 21(3–4): 407–414. DOI: http://dx.doi.org/10.1016/0146-6380(94)90202-X.
Wang, SW, Budge, SM, Iken, K, Gradinger, RR, Springer, AM, Wooller, JM. 2015. Importance of sympagic production to Bering Sea zooplankton as revealed from fatty acid-carbon stable isotope analyses. Mar Ecol Progress Ser 518: 31–50. DOI: http://dx.doi.org/10.3354/meps11076.
Wing, SR, McLeod, RJ, Leichter, JJ, Frew, RD, Lamare, MD. 2012. Sea ice microbial production supports Ross Sea benthic communities: Influence of a small but stable subsidy. Ecology 93(2): 314–323. DOI: http://dx.doi.org/10.1890/11-0996.1.
Xu, Y, Jaffé, R, Wachnicka, A, Gaiser, EE. 2006. Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: Paleoenvironmental indicators of diatom-derived organic matter inputs. Org Geochem 37(7): 847–859. DOI: http://dx.doi.org/10.1016/j.orggeochem.2006.02.001.