Akperov, M.; A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russian Federation
Rinke, A.; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, AWI, Potsdam, Germany
Mokhov, I. I.; A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russian Federation, Lomonosov Moscow State University, Moscow, Russian Federation
Matthes, H.; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, AWI, Potsdam, Germany
Semenov, V. A.; A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russian Federation, Institute of Geography, RAS, Moscow, Russian Federation
Adakudlu, M.; Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway
Cassano, J.; Cooperative Institute for Research in Environmental Sciences, Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, United States
Christensen, J. H.; Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway, University of Copenhagen, Niels Bohr Institute, Denmark
Dembitskaya, M. A.; A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russian Federation
Dethloff, K.; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, AWI, Potsdam, Germany
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Glisan, J.; Iowa State University, USA, United States
Gutjahr, O.; Max Planck Institute for Meteorology, Hamburg, Germany
Heinemann, G.; Environmental Meteorology, Faculty of Regional and Environmental Sciences, University of Trier, Germany
Koenigk, T.; Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, 60176, Sweden, Department of Meteorology, Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, 10654, Sweden
Koldunov, N. V.; MARUM-Center for Marine Environmental Sciences, Bremen, Germany, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, AWI, Bremerhaven, Germany
Laprise, R.; Centre ESCER, Université du Québec A Montréal, Montréal, QC, Canada
Mottram, R.; Danish Meteorological Institute, Copenhagen, Denmark
Nikiéma, O.; Centre ESCER, Université du Québec A Montréal, Montréal, QC, Canada
Parfenova, M.; A.M. Obukhov Institute of Atmospheric Physics, Moscow, Russian Federation
Scinocca, J. F.; Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada
Sein, D.; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, AWI, Bremerhaven, Germany
Sobolowski, S.; Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway
Winger, K.; Centre ESCER, Université du Québec A Montréal, Montréal, QC, Canada
Zhang, W.; Department of Physical Geography and Ecosystem Science, Lund University, Lund, 22362, Sweden, Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Mokhov I I, Mokhov O I, Petukhov V K and Khayrullin R R 1992 Effect of global climatic changes on the cyclonic activity in the atmosphere Izv. Atmos. Oceanic Phys. (Izv. Akad. Nauk, Fiz. Atmos. Okeana) 28 7-18
Mokhov I I, Mokhov O I, Petukhov V K and Khayrullin R R 1992 Cloud effect on the atmospheric eddy activity at climate change Rus. Meterol. Hydrol. 1 1-6
Mokhov I I et al 1994 The Life Cycles of Extratropical Cyclones II ed S. Grohas and M.A. Shapiro (Bergen: Geophysical Institute, University of Bergen) Extratropical cyclones and anticyclones: Tendencies of change 56-60
Mokhov I I, Chernokul'skii A V, Akperov M G, Dufresne J-L and Treut H Le 2009 Variations in the characteristics of cyclonic activity and cloudiness in the atmosphere of extratropical latitudes of the Northern Hemisphere based from model calculations compared with the data of the reanalysis and satellite data Dokl. Earth Sci. 424 147-150
Akperov M G and Mokhov I I 2013 Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime Izv. Atmos. Ocean. Phys. 49 113-120
Boisvert L N, Petty A A and Stroeve J C 2016 The Impact of the Extreme Winter 2015/16 Arctic Cyclone on the Barents-Kara Seas Mon. Weather Rev. 144 4279-87
Rinke A, Maturilli M, Graham R M, Matthes H, Handorf D, Cohen L, Hudson S R and Moore J C 2017 Extreme cyclone events in the Arctic: Wintertime variability and trends Environ. Res. Lett. 12
Yamagami A, Matsueda M and Tanaka H L 2017 Extreme Arctic cyclone in August 2016 Atmos. Sci. Lett. 18 307-314
Simmonds I and Rudeva I 2012 The great arctic cyclone of August 2012 Geophys. Res. Lett. 39 1-6
Akperov M, Rinke A, Mokhov I I, Matthes H, Semenov V A, Adakudlu M et al 2018 Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX) J. Geophys. Res. 123 2537-54
Bardin M Y and Polonsky A B 2005 North Atlantic oscillation and synoptic variability in the European- Atlantic region in winter Izv. Atmos. Ocean. Phys. 41 127-136
Akperov M G, Bardin M Y, Volodin E M, Golitsyn G S and Mokhov I I 2007 Probability distributions for cyclones and anticyclones from the NCEP/NCAR reanalysis data and the INM RAS climate model Izv. Atmos. Ocean. Phys. 43 705-712
Akperov M, Mokhov I I, Rinke A, Dethloff K and Matthes H 2015 Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations Theor. Appl. Climatol. 122 85-96
Zahn M, Akperov M G, Rinke A, Feser F and Mokhov I I 2018 Trends of cyclone characteristics in the Arctic and their patterns from different re-analysis data J. Geophys. Res. 123 2737-51
Akperov M G and Mokhov I I 2010 A comparative analysis of the method of extratropical cyclone identification Atmos. Ocean. Phys. 46 574-590
Neu U et al 2013 IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms Bull. Am. Meteorol. Soc. 94 529-547
Ulbrich U et al 2013 Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm? Meteorol. Zeitschrift 22 61-68
Simmonds I and Rudeva I 2014 A comparison of tracking methods for extreme cyclones in the Arctic basin Tellus A 1 1-13
Golitsyn G S, Mokhov I I, Akperov M G and Bardin M Y 2007 Distribution functions of probabilities of cyclones and anticyclones from 1952 to 2000: An instrument for the determination of global climate variations Dokl. Earth Sci. 413 324-326
Simmonds I and Keay K 2009 Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979-2008 Geophys. Res. Lett. 36 1-5
Wernli H and Schwierz C 2006 Surface cyclones in the ERA-40 dataset (1958-2001). Part I: Novel identification method and global climatology J. Atmos. Sci. 63 2486-2507
Simmonds I, Burke C and Keay K 2008 Arctic Climate Change as Manifest in Cyclone Behavior J. Clim. 21 5777-96
Crawford A D and Serreze M C 2016 Does the summer arctic frontal zone influence arctic ocean cyclone activity? J. Clim. 29 4977-93
Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S et al 2011 The ERA-Interim reanalysis: configuration and performance of the data assimilation system Quarterly Journal of the Royal Meteorological Society 137 553-597
Gelaro R et al 2017 The Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) J. Clim. 30 5419-54
Saha S et al 2010 The NCEP Climate Forecast System Reanalysis Bull. Amer. Meteor. Soc. 91 1015-57
Ebita A et al 2011 The Japanese 55-year Reanalysis "JRA-55": An Interim Report SOLA 7 149-152
Kobayashi S, Ota Y, Harada Y, Ebita Y, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C et al 2015 The JRA-55 Reanalysis: General Specifications and Basic Characteristics J. Meteorol. Soc. Japan 93 5-48
Gutjahr O., Heinemann G., Preußer A., Willmes S. and Drüe C. 2016 Quantification of ice production in Laptev Sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model Cryosph. 10 2999-3019
Scinocca J., Kharin V, Jiao Y, Qian M. et al 2016 Coordinated Global and Regional Climate Modeling J. Clim. 29 17-35
Sein D V, Koldunov N V, Pinto J G and Cabos W 2014 Sensitivity of simulated regional Arctic climate to the choice of coupled model domain Tellus, Series A: Dynamic Meteorology and Oceanography 66 1-18
Christensen O B, Drews M, Christensen J H, Dethloff K, Ketelsen K, Hebestadt I and Rinke A 2007 The HIRHAM Regional Climate Model Version 5 (β) DMI Technical report 06-17
Sommerfeld A, Nikiema O, Rinke A, Dethloff K and Laprise R 2015 Arctic budget study of intermember variability using HIRHAM5 ensemble simulations J. Geophys. Res. Atmos. 120 9390-07
Klaus D, Dethloff K, Dorn W, Rinke A and Wu D L 2016 New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data Geophys. Res. Lett. 43 5450-59
Lucas-Picher P, Boberg F, Christensen J H and Berg P 2013 Dynamical downscaling with reinitializations: a method to generate fine-scale climate data sets suitable for impact studies Journal of Hydrometeorology 14 1159-74
Lucas-Picher P, Wulff-Nielsen M, Christensen J H, Aalgeirsdóttir G, Mottram R and Simonsen S B 2012 Very high resolution regional climate model simulations over Greenland: Identifying added value J. Geophys. Res. Atmos. 117
Berg P, Döscher R and Koenigk T 2013 Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic Geosci. Model Dev. 6 849-59
Koenigk T, Berg P and Döscher R 2015 Arctic climate change in an ensemble of regional CORDEX simulations Polar Research 34 24603
Smith B, Samuelsson P, Wramneby A and Rummukainen M 2011 A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications Tellus, Ser. A Dyn. Meteorol. Oceanogr. 63 87-106
Zhang W, Jansson C, Miller P A, Smith B and Samuelsson P 2014 Biogeophysical feedbacks enhance the Arctic terrestrial carbon sink in regional Earth system dynamics Biogeosciences 11 5503-19
Shkolnik I M and Efimov S V 2013 Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: added value and uncertainties Environ. Res. Lett. 8 45007
Fettweis X, Box J E, Agosta C, Amory C, Kittel C, Lang C, van As D, Machguth H and Gallee H 2017 Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model Cryosph. 11 1015-33
Skamarock et al 2008 A Description of the Advanced Research WRF Version 3. NCAR technical note, NCAR/TN-475+STR
Martynov A, Laprise R, Sushama L, Winger K, Šeparović L and Dugas B 2013 Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: model performance evaluation Clim. Dyn. 41 2973-3005
Šeparović L, Alexandru A, Laprise R, Martynov A, Sushama L, Winger K, Tete K and Valin M 2013 Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model Clim. Dyn. 41 3167-3201
Takhsha M, Nikiéma O, Lucas-Picher P, Laprise R, Hernández-Díaz L and Winger K 2017 Dynamical downscaling with the fifth-generation Canadian regional climate model (CRCM5) over the CORDEX Arctic domain: effect of large-scale spectral nudging and of empirical correction of sea-surface temperature Clim. Dyn. 0 1-26
von Storch H, Langenberg H and Feser F 2000 A Spectral Nudging Technique for Dynamical Downscaling Purposes Mon. Weather Rev. 128 3664-73