Dawber, M., Rabe, K. M. & Scott, J. F. Physics of the thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005). DOI: 10.1103/RevModPhys.77.1083
Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007). DOI: 10.1146/annurev.matsci.37.061206.113016
Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014). DOI: 10.1557/mrs.2014.1
Agar, J. C. et al. Frontiers in strain-engineered multifunctional ferroic materials. MRS Commun. 6, 151–166 (2016). DOI: 10.1557/mrc.2016.29
Fennie, C. J. & Rabe, K. M. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006). DOI: 10.1103/PhysRevLett.97.267602
Lee, J. H. & Rabe, K. M. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010). DOI: 10.1103/PhysRevLett.104.207204
Bousquet, E., Spaldin, N. A. & Ghosez, P. Strain-induced ferroelectricity in simple rocksalt binary oxides. Phys. Rev. Lett. 104, 037601 (2010). DOI: 10.1103/PhysRevLett.104.037601
Garcia-Castro, A. C., Romero, A. H. & Bousquet, E. Strain-engineered multiferroicity in Pnma NaMnF3 fluoroperovskite. Phys. Rev. Lett. 116, 117202 (2016). DOI: 10.1103/PhysRevLett.116.117202
Yang, M. et al. Room temperature ferroelectricity in fluoroperovskite thin films. Sci. Rep. 7, 7182 (2017). DOI: 10.1038/s41598-017-07834-0
Wojdel, J. C. & Iniguez, J. Magnetoelectric response of multiferroic BiFeO3 and related materials from first-principles calculations. Phys. Rev. Lett. 103, 267205 (2009). DOI: 10.1103/PhysRevLett.103.267205
Wojdel, J. C. & Iniguez, J. Ab Initio indications for giant magnetoelectric effects driven by structural softness. Phys. Rev. Lett. 105, 037208 (2010). DOI: 10.1103/PhysRevLett.105.037208
Bousquet, E. & Spaldin, N. Induced magnetoelectric response in Pnma perovskites. Phys. Rev. Lett. 107, 197603–197605 (2011). DOI: 10.1103/PhysRevLett.107.197603
Halley, D. et al. Size-induced enhanced magnetoelectric effect and multiferroicity in chromium oxide nanoclusters. Nat. Commun. 5, 3167 (2014). DOI: 10.1038/ncomms4167
Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–959 (2010). DOI: 10.1038/nature09331
Bhattacharjee, S., Bousquet, E. & Ghosez, P. Engineering multiferroism in CaMnO3. Phys. Rev. Lett. 102, 117602 (2009). DOI: 10.1103/PhysRevLett.102.117602
Günter, T. et al. Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films. Phys. Rev. B 85, 214120 (2012). DOI: 10.1103/PhysRevB.85.214120
Becher, C. et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat. Nanotechnol. 10, 661–665 (2015). DOI: 10.1038/nnano.2015.108
Kamba, S. et al. Strong spin-phonon coupling in infrared and Raman spectra of SrMnO3. Phys. Rev. B 89, 064308 (2014). DOI: 10.1103/PhysRevB.89.064308
Maurel, L. et al. Nature of antiferromagnetic order in epitaxially strained multiferroic SrMnO3 thin films. Phys. Rev. B 92, 024419 (2015). DOI: 10.1103/PhysRevB.92.024419
Kim, B. G. Epitaxial strain induced ferroelectricity in rocksalt binary compound: Hybrid functional Ab initio calculation and soft mode group theory analysis. Sol. State Commun. 151, 674–677 (2011). DOI: 10.1016/j.ssc.2011.02.023
Suits, J. C. & Lee, K. Giant magneto‐optical kerr effect in EuO. J. Appl. Phys. 42, 3258–3260 (1971). DOI: 10.1063/1.1660721
Matsubara, M. et al. Ultrafast optical tuning of ferromagnetism via the carrier density. Nat. Commun. 6, 6724 (2015). DOI: 10.1038/ncomms7724
Shapira, Y., Foner, S. & Reed, T. B. EuO. I. Resistivity and Hall effect in fields up to 150 kOe. Phys. Rev. B 8, 2299–2315 (1973). DOI: 10.1103/PhysRevB.8.2299
Averyanov, D. V. et al. Fine structure of metal-insulator transition in EuO resolved by doping engineering. Nanotechnology 29, 195706 (2018). DOI: 10.1088/1361-6528/aab16e
Yamasaki, T., Ueno, K., Tsukazaki, A., Fukumura, T. & Kawasaki, M. Observation of anomalous Hall effect in EuO epitaxial thin films grown by a pulse laser deposition. Appl. Phys. Lett. 98, 082116 (2011). DOI: 10.1063/1.3557050
Melville, A. et al. Lutetium-doped EuO films grown by molecular-beam epitaxy. Appl. Phys. Lett. 100, 222101 (2012). DOI: 10.1063/1.4723570
Schmehl, A. et al. Epitaxial integration of the highly spin-polarized ferromagnetic semiconductor EuO with silicon and GaN. Nat. Mater 6, 882 (2007). DOI: 10.1038/nmat2012
Petzelt, J. & Kamba, S. Far infrared and terahertz spectroscopy of ferroelectric soft modes in thin films: a review. Ferroelectrics 503, 19–44 (2016). DOI: 10.1080/00150193.2016.1216702
Axe, J. D. Infrared dielectric dispersion in divalent europium chalcogenides. J. Phys. Chem. Solids 30, 1403–1406 (1969). DOI: 10.1016/0022-3697(69)90201-7
Diehl, R. & Brandt, G. Crystal structure refinement of YAlO3, a promising laser material. Mater. Res. Bull. 10, 85–90 (1975). DOI: 10.1016/0025-5408(75)90125-7
Pradip, R. et al. Phonon confinement and spin-phonon coupling in tensile-strained ultrathin EuO films. Nanoscale 11, 10968–10976 (2019). DOI: 10.1039/C9NR01931F
Bilc, D. I. et al. Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys. Rev. B 77, 165107 (2008). DOI: 10.1103/PhysRevB.77.165107
Erba, A., Baima, J., Bush, I., Orlando, R. & Dovesi, R. Large-scale condensed matter DFT simulations: performance and capabilities of the CRYSTAL code. J. Chem. Theory Comput. 13, 5019–5027 (2017). DOI: 10.1021/acs.jctc.7b00687
Yang, X., Wang, Y., Yan, H. & Chen, Y. Effects of epitaxial strains on spontaneous polarizations and band gaps of alkaline-earth-metal oxides MO (M = Mg, Ca, Sr, Ba). Comput. Mater. Sci. 121, 61–66 (2016). DOI: 10.1016/j.commatsci.2016.04.021
Galtier, M., Montaner, A. & Vidal, G. Phonon optiques de CaO, SrO, BaO au centre de la zone de Brillouin a 300 et 17 K. J. Phys. Chem. Solids 33, 2295–2302 (1972). DOI: 10.1016/S0022-3697(72)80304-4
Chang, S. S., Tompson, C. W., Gürmen, E. & Muhlestein, L. D. Lattice dynamics of BaO. J. Phys. Chem. Solids 36, 769–773 (1975). DOI: 10.1016/0022-3697(75)90100-6
Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers. J. Cryst. Growth 32, 265–273 (1976). DOI: 10.1016/0022-0248(76)90041-5
Goian, V. et al. Antiferrodistortive phase transition in EuTiO3. Phys. Rev. B 86, 054112 (2012). DOI: 10.1103/PhysRevB.86.054112
Scott, J. F. Ferroelectrics go bananas. J. Phys.: Condens. Matter 20, 021001 (2008).
Vasudevan, R. K., Balke, N., Maksymovych, P., Jesse, S. & Kalinin, S. V. Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev. 4, 021302 (2017). DOI: 10.1063/1.4979015
Lyddane, R. H., Sachs, R. G. & Teller, E. On the polar vibrations of alkali halides. Phys. Rev. 59, 673–676 (1941). DOI: 10.1103/PhysRev.59.673
Kashir, A., Jeong, H.-W., Jung, W., Jeong, Y. H. & Lee, G.-H. Strain-Induced Increase of dielectric constant in EuO thin film. Mater. Res. Express 6, 106321 (2019). DOI: 10.1088/2053-1591/ab405a
McGuire, T. R. & Shafer, M. W. Ferromagnetic europium compounds. J. Appl. Phys. 35, 984–988 (1964). DOI: 10.1063/1.1713568
Melville, A. et al. Effect of film thickness and biaxial strain on the Curie temperature of EuO. Appl. Phys. Lett. 102, 062404 (2013). DOI: 10.1063/1.4789972
Ingle, N. J. C. & Elfimov, I. S. Influence of epitaxial strain on the ferromagnetic semiconductor EuO: first-principles calculations. Phys. Rev. B 77, 121202 (2008). DOI: 10.1103/PhysRevB.77.121202
Stroka, B. et al. Specific heat of EuxSr1−xO near the ferromagnetic phase transition. Z. Phys. B - Condens. Matter 89, 39–43 (1992). DOI: 10.1007/BF01320827
Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). DOI: 10.1038/nature05023
Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004). DOI: 10.1038/nature02773
Skoromets, V. et al. Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy. Appl. Phys. Lett. 99, 052908 (2011). DOI: 10.1063/1.3624710
Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013). DOI: 10.1038/nature12582
Nuzhnyy, D. et al. Soft mode behavior in SrTiO3/DyScO3 thin films: evidence of ferroelectric and antiferrodistortive phase transitions. App. Phys. Lett. 95, 232902 (2009). DOI: 10.1063/1.3271179
Peng, W. W. et al. Room-temperature soft mode and ferroelectric like polarization in SrTiO3 ultrathin films: Infrared and ab initio study. Sci. Rep. 7, 2160 (2017). DOI: 10.1038/s41598-017-02113-4
Mundy, J. A. et al. Hetero-epitaxial EuO interfaces studied by analytic electron microscopy. Appl. Phys. Lett. 104, 091601 (2014). DOI: 10.1063/1.4867161
Mairoser, T. et al. High-quality EuO thin films the easy way via topotactic transformation. Nat. Commun. 6, 7716 (2015). DOI: 10.1038/ncomms8716
Caspers, C. et al. Interface engineering to create a strong spin filter contact to silicon. Sci. Rep. 6, 22912 (2016). DOI: 10.1038/srep22912
Averyanov, D. V. et al. Atomic-scale engineering of abrupt interface for direct spin contact of ferromagnetic semiconductor with silicon. Sci. Rep. 6, 22841 (2016). DOI: 10.1038/srep22841
Averyanov, D. V. et al. Direct epitaxial integration of the ferromagnetic semiconductor EuO with Si(111). J. Magn. Magn. Mater. 459, 136–140 (2018). DOI: 10.1016/j.jmmm.2017.11.062
Ulbricht, R. W., Schmehl, A., Heeg, T., Schubert, J. & Schlom, D. G. Adsorption-controlled growth of EuO by molecular-beam epitaxy. Appl. Phys. Lett. 93, 102105 (2008). DOI: 10.1063/1.2973180
Dressel, M. & Grüner, G. Electrodynamics of Solids 416–420 (Cambridge Press 2002)
Zagorac, D., Doll, K., Schon, J. C. & Jansen, M. Sterically active electron pairs in lead sulfide? An investigation of the electronic and vibrational properties of PbS in the transition region between the rock salt and the alpha-GeTe-type modifications. Chemistry 18, 10929–10936 (2012). DOI: 10.1002/chem.201200180
Yang, J. & Dolg, M. Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations. Theor. Chem. Accounts 113, 212–224 (2005). DOI: 10.1007/s00214-005-0629-0
Varignon, J. PhD thesis. https://tel.archives-ouvertes.fr/tel-00651567/document.
Pascale, F. et al. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL Code. J. Comput. Chem. 25, 888–897 (2004). DOI: 10.1002/jcc.20019