Mäki-Arvela, P., Salmi, T., Holmbom, B., Willfor, S., Yu-Murzin, D., Synthesis of sugars by hydrolysis of hemicelluloses-A review. Chem. Rev. 111 (2011), 5638–5666.
Ebringerova, A., Heinze, T., Xylan and xylan derivative – biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun. 21 (2000), 542–556.
Nabarlatz, D., Ebringerová, A., Montané, D., Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydr. Polym. 69 (2007), 20–28.
Griebl, A., Lange, T., Weber, H., Milacher, W., Sixta, H., Xylo-Oligosaccharide (XOS) formation through hydrothermolysis of xylan derived from viscose process. Macromol. Symp. 232 (2006), 107–120.
Wang, T., Li, C., Song, M., Fan, R., Xylo-oligosaccharides preparation through acid hydrolysis of hemicelluloses isolated from press-lye. Grain Oil Sci. Technol. 2 (2019), 73–77.
Zhang, H.Y., Zhou, X.L., Xu, Y., Yu, S.Y., Production of xylooligosaccharides from waste xylan, obtained from viscose fiber processing, by selective hydrolysis using concentrated acetic acid. J. Wood Chem. Technol. 37 (2017), 1–9.
Chemin, M., Wirotius, A.L., Ham-Pichavant, F., Chollet, G., Perez, D.D.S., Petit-Conil, M., Cramail, H., Grelier, S., Well-defined oligosaccharides by mild acidic hydrolysis of hemicelluloses. Eur. Polym. J. 66 (2015), 190–197.
Akpinar, O., Erdogan, K., Bostanci, S., Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials. Carbohydr. Res. 344 (2009), 660–666.
Wang, Y., Cao, X., Zhang, R., Xiao, L., Yuan, T., Shi, Q., Sun, R., Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis. RSC Adv. 8 (2018), 35211–35217.
Akpinar, O., Erdogan, K., Bostanci, S., Enzymatic production of xylooligosaccharide from selected agricultural wastes. Food Bioprod. Process. 87 (2009), 145–151.
Rakotoarivonina, H., Revol, P.-V., Aubry, N., Remond, C., The use of thermostable bacterial hemicellulases improves the conversion of lignocellulosic biomass to valuable molecules. Appl. Microbiol. Biotechnol. 100 (2016), 7577–7590.
Dupoiron, S., Lameloise, M.L., Bedu, M., Lewandowski, R., Fargues, C., Allais, F., Teixeira, A., Rakotoarivonina, H., Rémond, C., Recovering ferulic acid from wheat bran enzymatic hydrolysate by a novel and non-thermal process associating weak anion-exchange and electrodialysis. Separ. Purif. Technol. 200 (2018), 75–83.
Alvarez, C., Gonzalez, A., Negro, M.J., Ballesteros, I., Oliva, J.M., Saez, F., Optimized use of hemicellulose within a biorefinery for processing high value-added xylooligosaccharides. Ind. Crop. Prod. 99 (2017), 41–48.
Yang, R., Xu, S., Wang, Z., Yang, W., Aqueous extraction of corncob xylan and production of xylooligosaccharides. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 38 (2005), 677–682.
Mäkeläinen, H., Juntunen, M., Hasselwander, O., Prebiotic potential of xylo-oligosaccharides. Charalampopoulos, D., Rastall, R.A., (eds.) Prebiotics and Probiotics Science and Technology, 2009, Springer, New York, NY, 245–258.
Wang, Y., Prebiotics: present and future in food science and technology. Food Res. Int. 42 (2009), 8–12.
Amorim, C., Silverio, S.C., Prather, K.L.J., Rodrigues, L.R., From lignocellulosic residues to market: production and commercial potential of xylooligosaccharides. Biotechnol. Adv., 37, 2019, 1073997.
For a recent review, see:Kovensky, J., Grand, E., Recent advances in the synthesis of sugar-based surfactants. RSC Green Chem. Ser. 44 (2016), 159–204.
For a recent review, see:Neta, N.S., Teixeira, J.A., Rodrigues, L.R., Sugar ester surfactants: enzymatic synthesis and applications in food industry. Crit. Rev. Food Sci. Nutr. 55 (2015), 595–610.
Kahn, N.R., Rathod, V.K., Enzyme-catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochem. 50 (2015), 1793–1806.
Hsieh, S.W., Lee, M.R., Tsai, C.W., Lai, L.Y., Yeh, T., Hsieh, C.W., Yang, T.J., Chang, S.W., Enzymatic synthesis, purification and identification of bioactive trehalose ester derivatives for health applications. Food Bioprod. Process. 95 (2015), 163–172.
Watanabe, T., Katayama, S., Matsubara, M., Honda, Y., Kuwahara, M., Antibacterial carbohydrate monoesters suppressing cell growth of Streptococcus mutans in the presence of sucrose. Curr. Microbiol. 41 (2000), 210–213.
Queneau, Y., Chambert, S., Besset, C., Cheaib, R., Recent progress in the synthesis of carbohydrate-based amphiphilic materials: the example of sucrose and isomaltulose. Carbohydr. Res. 343 (2008), 1999–2009.
Liu, X., Gong, L., Xin, M., Liu, J., The synthesis of sucrose esters and selection of its catalyst. J. Mol. Catal. A: Enzym. 147 (1999), 37–40.
Pöhnlein, M., Hausmann, R., Lang, S., Syldatk, C., Enzymatic synthesis and modification of surface-active glycolipids. Eur. J. Lipid Sci. Technol. 117 (2015), 145–155.
van Kempen, S.E.H.J., Schols, H.A., van der Linden, E., Sagis, L.M.C., The effect of diesters and lauric acid on rheological properties of air/water interfaces stabilized by oligofructose lauric acid monoesters. J. Agric. Food Chem. 61 (2013), 7829–7837.
Udomrati, S., Cheetangdee, N., Gohtani, S., Nakajima, M., Uemura, K., Kobayashi, I., Formulation and characterization of esterified xylo-oligosaccharides-stabilized oil-in-water emulsions using microchannel emulsification. Colloids Surf. B Biointerfaces 148 (2016), 333–342.
Udomrati, S., Khalid, N., Gohtani, S., Nakajima, M., Neves, M.A., Uemura, K., Kobayashi, I., Effect of esterified oligosaccharides on the formation of oil-in-water emulsions. Carbohydr. Polym. 143 (2016), 44–50.
Udomrati, S., Gohtani, S., Enzymatic modification and characterization of xylo-oligosaccharide esters as potential emulsifiers. Int. Food Res. J. 22 (2015), 818–825.
Udomrati, S., Gohtani, S., Esterified xylo-oligosaccharides for stabilization of Tween 80-stabilized oil-in-water emulsions: stabilization mechanism, rheological properties, and stability of emulsions. J. Sci. Food Agric. 94 (2014), 3241–3247.
Méline, T., Muzard, M., Deleu, M., Rakotoarivonina, H., Plantier-Royon, R., Rémond, C., D-xylose and L-arabinose laurate esters: enzymatic synthesis, characterization and physico-chemical properties. Enzym. Microb. Technol. 112 (2018), 14–21.
Arcens, D., Grau, E., Grelier, S., Cramail, H., Peruch, F., 6-O-glucose palmitate synthesis with lipase: investigation of some key parameters. Mol. Catal. 460 (2018), 63–68.
Ferrer, M., Soliveri, J., Plou, F.J., Lopez-Cortes, N., Reyes-Duarte, D., Christensen, M., Copa-Patino, J.L., Ballesteros, A., Synthesis of sugar esters in solvent mixtures by lipases from Thermomyces lanuginosus and Candida Antartica B, and their anti-microbial properties. Enzym. Microb. Technol. 36 (2005), 391–398.
Walsh, M.K., Bombyk, R.A., Wagh, A., Bingham, A., Berreau, L.M., Synthesis of lactose monolaurate as influenced by various lipases and solvents. J. Mol. Catal. B Enzym. 60 (2009), 171–177.
Pleiss, J., Fischer, M., Schmid, R.D., Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem. Phys. Lipids 93 (1998), 67–80.
Cramer, J.F., Dueholm, M.S., Nielsen, S.B., Pedersen, D.S., Wimmer, R., Pedersen, L.H., Controlling the degree of esterification in lipase catalysed synthesis of xylitol fatty acid esters. Enzym. Microb. Technol. 41 (2007), 346–352.
Pedersen, N.R., Wimmer, R., Emmersen, J., Degn, P., Pedersen, L.H., Effect of fatty acid chain length on initial reaction rates and regioselectivity of lipase-catalysed esterification of disaccharides. Carbohydr. Res. 337 (2002), 1179–1184.
Mastihubova, M., Biely, P., Lipase-catalysed preparation of acetates of 4-nitrophenyl-β-D-xylopyranoside and their use in kinetic studies of acetyl migration. Carbohydr. Res. 339 (2004), 1353–1360.
Bashir, N.B., Phytian, S.J., Reason, A.J., Roberts, S.M., Enzymatic esterification and de-esterification of carbohydrates: synthesis of a naturally occurring rhamnopyranoside of p-hydroxybenzaldehyde and a systematic investigation of lipase-catalysed acylation of selected arylpyranosides. J. Chem. Soc., Perkin Trans. 1 (1995), 2203–2222.
Lopez, R., Montero, E., Sanchez, F., Canada, J., Fernandez-Mayoralas, A., Regioselective acetylations of alkyl β-D-xylopyranosides by use of lipase PS in organic solvents and application to the chemoenzymatic synthesis of oligosaccharides. J. Org. Chem. 59 (1994), 7027–7032.
Ciuffreda, P., Colombo, D., Ronchetti, F., Toma, L., Regioselective acylation of 6-deoxy-L- and -D-hexosides through lipase-catalyzed transesterification. Enhanced reactivity of the 4-OH function in the L-series. J. Org. Chem. 55 (1990), 4187–4190.
For reviews, see:Thorsheim, K., Siegbahn, A., Johnsson, R.E., Stålbrand, H., Manner, S., Widmalm, G., Ellervik, U., Chemistry of xylopyranosides. Carbohydr. Res. 418 (2015), 65–88.
Brusa, C., Muzard, M., Rémond, C., Plantier-Royon, R., β-Xylopyranosides: synthesis and applications. RSC Adv. 5 (2015), 91026–91055.
Danieli, B., Luisetti, M., Steurer, S., Michelitsch, A., Likussar, W., Riva, S., Reiner, J., Schubert-Zsilavecz, M., Application of lipase-catalyzed regioselective esterification in the preparation of digitonin derivatives. J. Nat. Prod. 62 (1999), 670–673.
Ritthitham, S., Wimmer, R., Pedersen, L.H., Polar co-solvents in tertiary alcohols effect initial reaction rates and regio-isomeric ratio ranging from 1.2 to 2.2 in a lipase catalysed synthesis of 6-O- and 6′-O-stearoyl sucrose. Process Biochem. 46 (2011), 931–935.
Reyes-Duarte, D., Lopez-Cortes, N., Ferrer, M., Plou, F., Ballesteros, A., Parameters affecting productivity in the lipase-catalysed synthesis of sucrose palmitate. Biocatal. Biotransform. 23 (2005), 19–27.
Garofalakis, G., Murray, B.S., Sarney, D.B., Surface activity and critical aggregation concentration of pure sugar esters with different sugar headgroups. J. Colloid Interface Sci. 229 (2000), 391–398.
van Kempen, S.E.H.J., Schols, H.A., van der Linden, E., Sagis, L.M.C., Effect of variations in the fatty acid chain on functional properties of oligofructose fatty acid esters. Food Hydrocolloids 40 (2014), 22–29.
Zhang, X., Song, F., Taxipalati, M., Wei, W., Feng, F., Chen, C.-S., Comparative study of surface-active properties and antimicrobial activities of disaccharide monoesters. PLoS One, 9, 2014, e114845.
Soultani, S., Ognier, S., Engasse, J.M., Ghoul, M., Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloids Surf. A: Physicochem. Eng. Asp. 227 (2003), 35–44.
Ducret, A., Giroux, A., Trani, M., Lortie, R., Characterization of enzymatically prepared biosurfactants. J. Am. Oil Chem. Soc. 73 (1996), 109–113.
Abad-Romero, B., Mereiter, K., Sixta, H., Hofinger, A., Kosma, P., Synthesis of regioselectively sulfated xylodextrins and crystal structure of sodium methyl β-D-xylopyranoside 4-O-sulfate hemihydrate. Carbohydr. Res. 344 (2009), 21–28.
Vrsanska, M., Nerinckx, W., Claeyssens, M., Biely, P., An alternative approach for the synthesis of fluorogenic substrates of endo-β-(1,4)-xylanases and some applications. Carbohydr. Res. 343 (2008), 541–548.
Zhao, Y., Chany, C.J. II, Sims, P.F.G., Sinnott, M.L., Definition of the substrate specificity of the sensing xylanase of Streptomyces cyaneus using xylooligosaccharide and cellooligosaccharide glycosides of 3,4-dinitrophenol. J. Biotechnol. 57 (1997), 181–190.
Zemplén, G., Pacsu, E., Über die Verseifung acetylierter Zucker und verwandter Substanzen. Chem. Ber. 62 (1929), 1613–1614.
Dondelinger, E., Aubry, N., Ben Chaabane, F., Cohen, C., Tayeb, J., Remond, C., Contrasted enzymatic cocktails reveal the importance of cellulases and hemicellulases activity ratios for the hydrolysis of cellulose in presence of xylans. AMB Express 6 (2016), 1–9.