[en] Understanding how long-term changes in environmental conditions influence the way that individuals cope with threats is essential in the context of behavioral adaptation to a rapidly changing world. However, little is known about the behavioral responses to predation risk for individuals that experienced different environmental conditions for extended periods of time, such as food levels and light conditions. In this experimental study, we tested whether previous long-term exposure to different food levels (low versus high) and light conditions (0-hour light versus 8-hour light) play a significant role in shaping the antipredator response (i.e., the probability of emerging from the refuge and the distance moved) to stimuli from caged larval dragonflies, in larvae of the fire salamander (Salamandra salamandra). Specifically, we quantified behavioral differences in the response to predation risk in larval salamanders that were reared in the laboratory for two months under controlled food and light conditions. The results of this study showed that the interaction between food level and light conditions affected the antipredator behavior of the larvae. Fire salamander larvae maintained at low food levels and in 8-hour light conditions emerged from the refuge with a higher probability (i.e., took more risk) than larvae maintained at high food levels and all other combinations of light conditions. Thus, our results highlight the complexity of antipredator responses, pointing attention to the fact that interactions among environmental factors are likely to determine the magnitude of antipredator response.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Băncilă, Raluca Ioana; “Emil Racoviţă” Institute of Speleology
Plăiaşu, Rodica; “Emil Racoviţă” Institute of Speleology
Stănescu, Florina; Ovidius University Constanța
Schmidt, Benedikt R.; University of Zurich
Nae, Ioana; “Emil Racoviţă” Institute of Speleology
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens
Language :
English
Title :
Food level and light conditions affect the antipredator behavior in larvae of a stream-breeding amphibian
Publication date :
February 2021
Journal title :
Behavioral Ecology and Sociobiology
ISSN :
0340-5443
eISSN :
1432-0762
Publisher :
Springer, Germany
Volume :
75
Issue :
2
Pages :
36
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique WBI - Wallonie-Bruxelles International Executive Unit for Financing Higher Education, Research, Development and Innovation CCCDI-UEFISCDI (ANCS)
Albrecht U, Oster H (2001) The circadian clock and behaviour. Behav Brain Res 125:89–91. 10.1016/S0166-4328(01)00288-1 DOI: 10.1016/S0166-4328(01)00288-1
Alford RA (1999) Ecology: resource use, competition, and predation. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 240–278
Altwegg R (2003) Hungry predators render predator-avoidance behavior in tadpoles ineffective. Oikos 100:311–316. 10.1034/j.1600-0706.2003.12206.x DOI: 10.1034/j.1600-0706.2003.12206.x
Anderson JD, Graham RE (1967) Vertical migration and stratification of larval Ambystoma. Copeia 1967:371c374. 10.2307/1442127 DOI: 10.2307/1442127
Anholt BR, Werner EE (1995) Interaction between food availability and predation mortality mediated by adaptive behavior. Ecology 76:2230–2234. 10.2307/1941696 DOI: 10.2307/1941696
Anholt BR, Skelly DK, Werner EE (1996) Factors modifying antipredator behavior in larval toads. Herpetologica 52:301–313
Anholt BR, Werner E, Skelly DK (2000) Effect of food and predators on the activity of four larval ranid frogs. Ecology 81:3059–3521. 10.1890/0012-9658(2000)081[3509:EOFAPO]2.0.CO;2 DOI: 10.1890/0012-9658(2000)081[3509:EOFAPO]2.0.CO;2
Babbitt KJ, Tanner GW (1997) Effects of cover and predator identity on predation of Hyla squirella tadpoles. J Herpetol 31:128–130. 10.2307/1565342 DOI: 10.2307/1565342
Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. 10.18637/jss.v067.i01 DOI: 10.18637/jss.v067.i01
Bonter DN, Zuckerberg B, Sedgwick CW, Hochachka WM (2013) Daily foraging patterns in free-living birds: exploring the predation-starvation trade-off. Proc R Soc B 280:20123087. 10.1098/rspb.2012.3087 DOI: 10.1098/rspb.2012.3087
Carlson BE, Newman JC, Langkilde T (2015) Food or fear: hunger modifies responses to injured conspecifics in tadpoles. Hydrobiologia 743:299–308. 10.1007/s10750-014-2048-5 DOI: 10.1007/s10750-014-2048-5
Cressler CE, King AA, Werner EE (2010) Interactions between behavioral and life-history trade-offs in the evolution of integrated predator-defense plasticity. Am Nat 176:276–288. 10.1086/655425 DOI: 10.1086/655425
Cupp PV (1994) Salamanders avoid chemical cues from predators. Anim Behav 48:232–235. 10.1006/anbe.1994.1231 DOI: 10.1006/anbe.1994.1231
da Silva Nunes V (1988) Vocalizations of treefrogs (Smilisca sila) in response to bat predation. Herpetologica 44:8–10
Delcourt J, Denoël M, Ylieff M, Poncin P (2013) Video multitracking of fish behaviour: a synthesis and future perspectives. Fish Fish 14:186–204. 10.1111/j.1467-2979.2012.00462.x DOI: 10.1111/j.1467-2979.2012.00462.x
Ding GH, Lin ZH, Zhao LH, Fan XL, Wei L (2014) Effects of light intensity on activity in four sympatric anuran tadpoles. Zool Res 35:332–337. 10.13918/j.issn.2095-8137.2014.4.332 DOI: 10.13918/j.issn.2095-8137.2014.4.332
Erskine DJ, Hutchison VH (1982) Reduced thermal tolerance in an amphibian treated with melatonin. J Therm Biol 7:121–123 DOI: 10.1016/0306-4565(82)90043-2
Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks
Gern WA, Norris DO, Duvall D (1983) The effect of light and temperature on plasma melatonin in neotenic tiger salamanders (Ambystoma tigrinum). J Herpetol 17:228–234. 10.2307/1563824 DOI: 10.2307/1563824
Godin J-GJ, Crossman SL (1994) Hunger-dependent predator inspection and foraging behaviors in the threespine stickleback (Gasterosteus aculeatus) under predation risk. Behav Ecol Sociobiol 34:359–366. 10.1007/BF00197006 DOI: 10.1007/BF00197006
Heller R, Milinski M (1979) Optimal foraging of sticklebacks on swarming prey. Anim Behav 27:1127–1141. 10.1016/0003-3472(79)90061-7 DOI: 10.1016/0003-3472(79)90061-7
Holomuzki JR (1986) Predator avoidance and diel patterns of microhabitat use by larval tiger salamanders. Ecology 67:737–748. 10.2307/1937697 DOI: 10.2307/1937697
Horat P, Semlitsch RD (1994) Effects of predation risk and hunger on the behaviour of two species of tadpoles. Behav Ecol Sociobiol 34:393–401. 10.1007/BF00167330 DOI: 10.1007/BF00167330
Hutchison VH, Black JJ, Erskine DJ (1979) Melatonin and chlorpromazine: thermal selection in the mud-puppy, Necturus maculosus. Life Sci 25:527–530. 10.1016/0024-3205(79)90565-4 DOI: 10.1016/0024-3205(79)90565-4
Juszczyk W, Zakrzewski M (1981) External morphology of larval stages of the spotted salamander, Salamandra salamandra (L). Acta Biol Cracov Ser Zoo 23:127–135
Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–363. 10.1080/11956860.1998.11682468 DOI: 10.1080/11956860.1998.11682468
Krause ET, Steinfartz S, Caspers BA (2011) Poor nutritional conditions during the early larval stage reduce risk-taking activities of fire salamander larvae (Salamandra salamandra). Ethology 117:416–421. 10.1111/j.1439-0310.2011.01886.x DOI: 10.1111/j.1439-0310.2011.01886.x
Kurali A, Pásztor K, Hettyey A, Tóth Z (2018) Resource-dependent temporal changes in antipredator behavior of common toad (Bufo bufo) tadpoles. Behav Ecol Sociobiol 72:91. 10.1007/s00265-018-2503-9 DOI: 10.1007/s00265-018-2503-9
Lawler SP (1989) Behavioural responses to predators and predation risk in four species of larval anurans. Anim Behav 38:1039–1047. 10.1016/S0003-3472(89)80142-3 DOI: 10.1016/S0003-3472(89)80142-3
Lienart GD, Mitchell MD, Ferrari MC, McCormick MI (2014) Temperature and food availability affect risk assessment in an ectotherm. Anim Behav 89:199–204. 10.1016/j.anbehav.2013.12.031 DOI: 10.1016/j.anbehav.2013.12.031
Lima SL (1998) Stress and decision making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. Adv Stud Behav 27:215–290. 10.1016/S0065-3454(08)60366-6 DOI: 10.1016/S0065-3454(08)60366-6
Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. 10.1139/z90-092 DOI: 10.1139/z90-092
Manenti R, Ficetola GF, Marieni A, De Bernardi F (2011) Caves as breeding sites for Salamandra salamandra: habitat selection, larval development and conservation issues. North-West J Zool 7:304–309
Manenti R, Denoël M, Ficetola GF (2013) Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim Behav 86:375–382. 10.1016/j.anbehav.2013.05.028 DOI: 10.1016/j.anbehav.2013.05.028
Manenti R, Melotto A, Denoël M, Ficetola GF (2016) Amphibian breeding in refuge habitats have larvae with stronger antipredatory responses. Anim Behav 118:115–121. 10.1016/j.anbehav.2016.06.006 DOI: 10.1016/j.anbehav.2016.06.006
Mangel M, Clark CW (1986) Towards a unified foraging theory. Ecology 67:1127–1138. 10.2307/1938669 DOI: 10.2307/1938669
Martín J, López P (1999) When to come out from a refuge: risk-sensitive and state-dependent decisions in an alpine lizard. Behav Ecol 10:487–492. 10.1093/beheco/10.5.487 DOI: 10.1093/beheco/10.5.487
McNamara JM, Houston AI (1986) The common currency for behavioral decisions. Am Nat 127:358–378 DOI: 10.1086/284489
Nonacs P, Dill LM (1990) Mortality risk versus food quality trade-offs in a common currency: patch preferences in ants. Ecology 71:1886–1892. 10.2307/1937596 DOI: 10.2307/1937596
Oswald P, Tunnat BA, Hahn LG, Caspers BA (2020) There is no place like home: larval habitat type and size affect risk-taking behaviour in fire salamander larvae (Salamandra salamandra). Ethology 126:914–921. 10.1111/eth.13070 DOI: 10.1111/eth.13070
Poulsen SB, Svendsen JC, Jensen LF, Schulz C, Jäger-Kleinicke T, Schwarten H (2010) Effects of food deprivation on refuge use and dispersal in juvenile North Sea houting Coregonus oxyrinchus under experimental conditions. J Fish Biol 77:1702–1708. 10.1111/j.1095-8649.2010.02772.x DOI: 10.1111/j.1095-8649.2010.02772.x
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/
Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. 10.1038/nmeth.2089 DOI: 10.1038/nmeth.2089
Semlitsch RD (1987) Interactions between fish and salamander larvae. Oecologia 72:482–486. 10.1007/BF00378972 DOI: 10.1007/BF00378972
Semlitsch RD, Reyer HU (1992) Modification of anti-predator behaviour in tadpoles by environmental conditioning. J Anim Ecol 61:353–360. 10.2307/5327 DOI: 10.2307/5327
Sih A (1980) Optimal behavior: can foragers balance two conflicting demands? Science 210:1041–1043. 10.1126/science.210.4473.1041 DOI: 10.1126/science.210.4473.1041
Sih A (1987) Predators and prey lifestyles: an evolutionary and ecological overview. In: Kerfoot WC, Sih A (eds) Predation: direct and indirect impacts on aquatic communities. University Press of New England, Hanover, pp 203–224
Sih A, Petranka JW, Kats LB (1988) The dynamics of prey refuge use: a model and tests with sunfish and salamander larvae. Am Nat 132:463–483. 10.1086/284865 DOI: 10.1086/284865
Sih A, Kats LB, Moore RD (1992) Effects of predatory sunfish on the density, drift and refuge use of stream salamander larvae. Ecology 73:1418–1430. 10.2307/1940687 DOI: 10.2307/1940687
Sogard SM, Olla BL (1996) Food deprivation affects vertical distribution and activity of a marine fish in a thermal gradient: potential energy-conserving mechanisms. Mar Ecol Prog Ser 133:43–55. 10.3354/meps133043 DOI: 10.3354/meps133043
Sredl MJ, Collins JP (1992) The interaction of predation, competition, and habitat complexity in structuring an amphibian community. Copeia 1992:607–614. 10.2307/1446138 DOI: 10.2307/1446138
Taylor JT (1984) Comparative evidence for competition between the salamanders Ambystoma gracile and Taricha granulosa. Copeia 1984:672–683. 10.2307/1445148 DOI: 10.2307/1445148
Teplitsky C, Plénet S, Joly P (2003) Tadpoles’ responses to risk of fish introduction. Oecologia 134:270–277. 10.1007/s00442-002-1106-2 DOI: 10.1007/s00442-002-1106-2
Thiesmeier B (2004) Der Feuersalamander. Laurenti-Verlag, Bielefeld
Tvardíková K, Fuchs R (2011) Do birds behave according to dynamic risk assessment theory? A feeder experiment. Behav Ecol Sociobiol 65:727–733. 10.1007/s00265-010-1075-0 DOI: 10.1007/s00265-010-1075-0
Van Buskirk J, Schmidt BR (2000) Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology 81:3009–3028. 10.1890/0012-9658(2000)081[3009:PIPPIL]2.0.CO;2
Werner EE, Anholt BR (1993) Ecological consequences of the tradeoff between growth and mortality rates mediated by foraging activity. Am Nat 142:242–272. 10.1086/285537 DOI: 10.1086/285537
Whitham J, Mathis AJ (2000) Effects of hunger and predation risk on foraging behavior of graybelly salamanders, Eurycea multiplicata. J Chem Ecol 26:1659–1665. 10.1023/A:1005590913680 DOI: 10.1023/A:1005590913680
Winandy L, Colin M, Denoël M (2016) Temporal habitat shift of a polymorphic newt species under predation risk. Behav Ecol 27:1025–1032. 10.1093/beheco/arw008 DOI: 10.1093/beheco/arw008
Wise SE, Buchanan BW (2006) Influence of artificial illumination on the nocturnal behavior and physiology of salamanders. In: Rich C, Tongcore T (eds) Ecological Consequences of Artificial Night Lighting. Island Press, Washington DC, pp 221–251
Wise SE, Jaeger RJ (1998) The influence of tail autotomy on agonistic behaviour in a territorial salamander. Anim Behav 55:1707–1716. 10.1006/anbe.1997.0720 DOI: 10.1006/anbe.1997.0720
Zhou XQ, Niu CJ, Li QF, Ma HF (1998) The effect of light intensity on daily food consumption and specific growth rate of the juvenile soft-shelled turtle, Trionyx sinensis. Acta Zool Sinica 44:157–161