Le Bail, Romain ; Université de Liège - ULiège > Stem Cells-Molecular Regulation of Neurogenesis
Bonafina, Antonela ; Université de Liège - ULiège > Stem Cells-Molecular Regulation of Neurogenesis
Espuny Camacho, Ira Mercedes ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Nguyen, Laurent ✱; Université de Liège - ULiège > Stem Cells-Molecular Regulation of Neurogenesis
✱ These authors have contributed equally to this work.
Language :
English
Title :
Learning about cell lineage, cellular diversity and evolution of the human brain through stem cell models
Jabaudon, D., Fate and freedom in developing neocortical circuits. Nat Commun 8 (2017), 1–9.
Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L., Long, B., Johansen, N., Penn, O., et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573 (2019), 61–68.
Charvet, C.J., Hof, P.R., Raghanti, M.A., Van Der Kouwe, A.J., Sherwood, C.C., Takahashi, E., Combining diffusion magnetic resonance tractography with stereology highlights increased cross-cortical integration in primates. J Comp Neurol 525 (2017), 1075–1093.
Sun, T., Hevner, R.F., Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 15 (2014), 217–232.
Kowalczyk, T., Pontious, A., Englund, C., Daza, R.A.M., Bedogni, F., Hodge, R., Attardo, A., Bell, C., Huttner, W.B., Hevner, R.F., Intermediate neuronal progenitors (Basal Progenitors) produce pyramidal–projection neurons for all layers of cerebral cortex. Cereb Cortex 19 (2009), 2439–2450.
Sessa, A., Mao, C., Hadjantonakis, A.-K., Klein, W.H., Broccoli, V., Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60 (2008), 56–69.
Hansen, D.V., Lui, J.H., Parker, P.R.L., Kriegstein, A.R., Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464 (2010), 554–561.
Fietz, S.A., Kelava, I., Vogt, J., Wilsch-Bräuninger, M., Stenzel, D., Fish, J.L., Corbeil, D., Riehn, A., Distler, W., Nitsch, R., et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13 (2010), 690–699.
Guo, C., Eckler, M.J., McKenna, W.L., McKinsey, G.L., Rubenstein, J.L.R., Chen, B., Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 80 (2013), 1167–1174.
Price, J., Thurlow, L., Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104 (1988), 473–482.
Luskin, M., Pearlman, A.L., Sanes, J.R., Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a Recombinant Retrovirus. Neuron 1 (1988), 635–647.
Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., Wataya, T., Nishiyama, A., Muguruma, K., Sasai, Y., Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3 (2008), 519–532.
Espuny-Camacho, I., Michelsen, K.A., Gall, D., Linaro, D., Hasche, A., Bonnefont, J., Bali, C., Orduz, D., Bilheu, A., Herpoel, A., et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 77 (2013), 440–456.
Shi, Y., Kirwan, P., Smith, J., Robinson, H.P.C., Livesey, F.J., Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15 (2012), 477–486.
Otani, T., Marchetto, M.C., Gage, F.H., Simons, B.D., Livesey, F.J., 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18 (2016), 467–480.
Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., Van Den Ameele, J., Espuny-Camacho, I., Herpoel, A., Passante, L., Schiffmann, S.N., et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455 (2008), 351–357.
Gil-Sanz, C., Espinosa, A., Fregoso, S.P., Bluske, K.K., Cunningham, C.L., Martinez-Garay, I., Zeng, H., Franco, S.J., Müller, U., Lineage tracing using Cux2-Cre and Cux2-CreERT2 mice. Neuron 86 (2015), 1091–1099.
Franco, S.J., Gil-Sanz, C., Martinez-Garay, I., Espinosa, A., Harkins-Perry, S.R., Ramos, C., Muller, U., Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337 (2012), 746–749.
Llorca, A., Ciceri, G., Beattie, R., Wong, F.K., Diana, G., Serafeimidou-Pouliou, E., Fernández-Otero, M., Streicher, C., Arnold, S.J., Meyer, M., et al. A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture. eLife, 8, 2019.
Okamoto, M., Miyata, T., Konno, D., Ueda, H.R., Kasukawa, T., Hashimoto, M., Matsuzaki, F., Kawaguchi, A., Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun, 7, 2016.
Nowakowski, T.J., Bhaduri, A., Pollen, A.A., Alvarado, B., Mostajo-Radji, M.A., Di Lullo, E., Haeussler, M., Sandoval-Espinosa, C., Liu, S.J., Velmeshev, D., et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358 (2017), 1318–1323.
Telley, L., Agirman, G., Prados, J., Amberg, N., Fièvre, S., Oberst, P., Bartolini, G., Vitali, I., Cadilhac, C., Hippenmeyer, S., et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science, 364, 2019 This study identifies gene networks that progressively unfold as apical radial glial cells mature. These temporally regulated networks are inherited by daughter cells and serve as ground states on which conserved differentiation programs and environmental cues are applied to generate neuronal diversity.
Lui, J.H., Hansen, D.V., Kriegstein, A.R., Development and evolution of the human neocortex. Cell 146 (2011), 18–36.
Shimojo, H., Ohtsuka, T., Kageyama, R., Dynamic expression of notch signaling genes in neural stem/progenitor cells. Front Neurosci, 5, 2011.
Borghese, L., Dolezalova, D., Opitz, T., Haupt, S., Leinhaas, A., Steinfarz, B., Koch, P., Edenhofer, F., Hampl, A., Brüstle, O., Inhibition of notch signaling in human embryonic stem cell-derived neural stem cells delays G1/S phase transition and accelerates neuronal differentiation in vitro and in vivo. Stem Cells 28 (2010), 955–964.
Manning, B.D., Toker, A., AKT/PKB signaling: navigating the network. Cell 169 (2017), 381–405.
Groszer, M., Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294 (2001), 2186–2189.
Li, Y., Muffat, J., Omer, A., Bosch, I., Lancaster, M.A., Sur, M., Gehrke, L., Knoblich, J.A., Jaenisch, R., Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20 (2017), 385–396.e3.
Kim, W.-Y., Wang, X., Wu, Y., Doble, B.W., Patel, S., Woodgett, J.R., Snider, W.D., GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci 12 (2009), 1390–1397.
Draganova, K., Zemke, M., Zurkirchen, L., Valenta, T., Cantù, C., Okoniewski, M., Schmid, M.-T., Hoffmans, R., Götz, M., Basler, K., et al. Wnt/β-catenin signaling regulates sequential fate decisions of murine cortical precursor cells. Stem Cells 33 (2015), 170–182.
Vitali, I., Fièvre, S., Telley, L., Oberst, P., Bariselli, S., Frangeul, L., Baumann, N., McMahon, J.J., Klingler, E., Bocchi, R., et al. Progenitor hyperpolarization regulates the sequential generation of neuronal subtypes in the developing neocortex. Cell 174 (2018), 1264–1276.e15 This study shows that apical progenitors of the cortex are progressively hyperpolarized over the course of cortical development, consecutively inhibiting Wnt/β-catenin signaling and shaping their molecular identity.
Oberst, P., Fièvre, S., Baumann, N., Concetti, C., Bartolini, G., Jabaudon, D., Temporal plasticity of apical progenitors in the developing mouse neocortex. Nature 573 (2019), 370–374.
López-Tobón, A., Villa, C.E., Cheroni, C., Trattaro, S., Caporale, N., Conforti, P., Iennaco, R., Lachgar, M., Rigoli, M.T., Marcó de la Cruz, B., et al. Human cortical organoids expose a differential function of GSK3 on cortical neurogenesis. Stem Cell Rep 13 (2019), 847–861.
Iefremova, V., Manikakis, G., Krefft, O., Jabali, A., Weynans, K., Wilkens, R., Marsoner, F., Brändl, B., Müller, F.J., Koch, P., et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep 19 (2017), 50–59 This paper shows that forebrain organoids derived from Miller-Dieker syndrome (MDS) patients showed reduced levels of Wnt signaling, and a change from symmetric to asymmetric type of vRGCs division that resulted in smaller size organoids.
Dehay, C., Kennedy, H., Cell-cycle control and cortical development. Nat Rev Neurosci 8 (2007), 438–450.
Calegari, F., Haubensak, W., Haffner, C., Huttner, W.B., Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25 (2005), 6533–6538.
Zhang, W., Yang, S.-L., Yang, M., Herrlinger, S., Shao, Q., Collar, J.L., Fierro, E., Shi, Y., Liu, A., Lu, H., et al. Modeling microcephaly with cerebral organoids reveals a WDR62–CEP170–KIF2A pathway promoting cilium disassembly in neural progenitors. Nat Commun, 10, 2019, 2612.
Amberg, N., Laukoter, S., Hippenmeyer, S., Epigenetic cues modulating the generation of cell-type diversity in the cerebral cortex. J Neurochem 149 (2019), 12–26.
Tasic, B., Yao, Z., Graybuck, L.T., Smith, K.A., Nguyen, T.N., Bertagnolli, D., Goldy, J., Garren, E., Economo, M.N., Viswanathan, S., et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563 (2018), 72–78.
Cadwell, C.R., Bhaduri, A., Mostajo-Radji, M.A., Keefe, M.G., Nowakowski, T.J., Development and arealization of the cerebral cortex. Neuron 103 (2019), 980–1004.
Alfano, C., Studer, M., Neocortical arealization: evolution, mechanisms, and open questions. Dev Neurobiol 73 (2013), 411–447.
Pattabiraman, K., Golonzhka, O., Lindtner, S., Nord, A.S., Taher, L., Hoch, R., Silberberg, S.N., Zhang, D., Chen, B., Zeng, H., et al. Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex. Neuron 82 (2014), 989–1003.
Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de Rivera, H., Bien, E., Baum, M., Bortolin, L., Wang, S., et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174 (2018), 1015–1030.e16.
Zhu, Y., Sousa, A.M.M., Gao, T., Skarica, M., Li, M., Santpere, G., Esteller-Cucala, P., Juan, D., Ferrández-Peral, L., Gulden, F.O., et al. Spatiotemporal transcriptomic divergence across human and macaque brain development. Science, 362, 2018, eaat8077.
Li, M., Santpere, G., Imamura Kawasawa, Y., Evgrafov, O.V., Gulden, F.O., Pochareddy, S., Sunkin, S.M., Li, Z., Shin, Y., Zhu, Y., et al. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 362, 2018, eaat7615.
Espuny-Camacho, I., Michelsen, K.A., Linaro, D., Bilheu, A., Acosta-Verdugo, S., Herpoel, A., Giugliano, M., Gaillard, A., Vanderhaeghen, P., Human pluripotent stem-cell-derived cortical neurons integrate functionally into the lesioned adult murine visual cortex in an area-specific way. Cell Rep 23 (2018), 2732–2743 This study shows that neural progenitors differentiated from human embryonic stem cells acquire a visual fate and establish a projection pattern corresponding to their areal identity when transplanted in the mouse visual cortex. Interestingly, hESC-derived visual cortical cells transplanted into motor cortex kept their original areal identity and failed to reestablish neural networks.
Michelsen, K.A., Acosta-Verdugo, S., Benoit-Marand, M., Espuny-Camacho, I., Gaspard, N., Saha, B., Gaillard, A., Vanderhaeghen, P., Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells. Neuron 85 (2015), 982–997.
Steinbeck, J.A., Koch, P., Derouiche, A., Brüstle, O., Human embryonic stem cell-derived neurons establish region-specific, long-range projections in the adult brain. Cell Mol Life Sci 69 (2012), 461–470.
Doerr, J., Schwarz, M.K., Wiedermann, D., Leinhaas, A., Jakobs, A., Schloen, F., Schwarz, I., Diedenhofen, M., Braun, N.C., Koch, P., et al. Whole-brain 3D mapping of human neural transplant innervation. Nat Commun, 8, 2017, 14162.
Gaillard, A., Nasarre, C., Roger, M., Early (E12) cortical progenitors can change their fate upon heterotopic transplantation. Eur J Neurosci 17 (2003), 1375–1383.
Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., Sasai, Y., Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci U S A 110 (2013), 20284–20289.
Lancaster, M.a, Renner, M., Martin, C., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., Knoblich, J.A., Cerebral organoids model human brain development and microcephaly. Nature 501 (2013), 373–379.
Bhaduri, A., Andrews, M.G., Mancia Leon, W., Jung, D., Shin, D., Allen, D., Jung, D., Schmunk, G., Haeussler, M., Salma, J., et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578 (2020), 142–148 This study assesses the accuracy of cortical organoids as models of human development by comparing single-cell RNA sequencing datasets. These findings suggest that although cortical organoids generate broad cell types closely related to primary tissue, they fail to replicate cellular composition and appropriate maturation patterns due to the activation of cellular stress pathways in vitro.
Laclef, C., Métin, C., Conserved rules in embryonic development of cortical interneurons. Semin Cell Dev Biol 76 (2018), 86–100.
van den Ameele, J., Tiberi, L., Vanderhaeghen, P., Espuny-Camacho, I., Thinking out of the dish: what to learn about cortical development using pluripotent stem cells. Trends Neurosci 37 (2014), 334–342.
Betizeau, M., Cortay, V., Patti, D., Pfister, S., Gautier, E., Bellemin-Ménard, A., Afanassieff, M., Huissoud, C., Douglas, R.J., Kennedy, H., et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80 (2013), 442–457.
Kornack, D.R., Rakic, P., Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci U S A 95 (1998), 1242–1246.
Calegari, F., Huttner, W.B., An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116 (2003), 4947–4955.
Lukaszewicz, A., Savatier, P., Cortay, V., Giroud, P., Huissoud, C., Berland, M., Kennedy, H., Dehay, C., G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47 (2005), 353–364.
Maroof, A.M., Keros, S., Tyson, J.A., Ying, S.W., Ganat, Y.M., Merkle, F.T., Liu, B., Goulburn, A., Stanley, E.G., Elefanty, A.G., et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12 (2013), 559–572.
Nicholas, C.R., Chen, J., Tang, Y., Southwell, D.G., Chalmers, N., Vogt, D., Arnold, C.M., Chen, Y.J.J., Stanley, E.G., Elefanty, A.G., et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12 (2013), 573–586.
Dyer, M.A., Stem cells expand insights into human brain evolution. Cell Stem Cell 18 (2016), 425–426.
Kanton, S., Boyle, M.J., He, Z., Santel, M., Weigert, A., Sanchís-Calleja, F., Guijarro, P., Sidow, L., Fleck, J.S., Han, D., et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574 (2019), 418–422.
Pollen, A.A., Bhaduri, A., Andrews, M.G., Nowakowski, T.J., Meyerson, O.S., Mostajo-Radji, M.A., Di Lullo, E., Alvarado, B., Bedolli, M., Dougherty, M.L., et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176 (2019), 743–756.e17.
Fiddes, I.T., Lodewijk, G.A., Mooring, M., Bosworth, C.M., Ewing, A.D., Mantalas, G.L., Novak, A.M., van den Bout, A., Bishara, A., Rosenkrantz, J.L., et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173 (2018), 1356–1369.e22.
Suzuki, I.K., Gacquer, D., Van Heurck, R., Kumar, D., Wojno, M., Bilheu, A., Herpoel, A., Lambert, N., Cheron, J., Polleux, F., et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through delta/notch regulation. Cell 173 (2018), 1370–1384.e16 This paper shows that Notch2NL, a human specific paralog of Notch2 receptor promotes the clonal expansion of human cortical progenitors that may contribute for the expansion of the human cortex.
Bershteyn, M., Nowakowski, T.J., Pollen, A.A., Di Lullo, E., Nene, A., Wynshaw-Boris, A., Kriegstein, A.R., Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20 (2017), 435–449.e4.
Petanjek, Z., Judaš, M., Šimić, G., Rašin, M.R., Uylings, H.B.M., Rakic, P., Kostović, I., Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A 108 (2011), 13281–13286.
DeFelipe, J., The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front Neuroanat, 5, 2011.
Mariani, J., Simonini, M.V., Palejev, D., Tomasini, L., Coppola, G., Szekely, A.M., Horvath, T.L., Vaccarino, F.M., Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A 109 (2012), 12770–12775.
Pasca, A.M., Sloan, S.A., Clarke, L.E., Tian, Y., Makinson, C.D., Huber, N., Kim, C.H., Park, J.Y., O'Rourke, N.A., Nguyen, K.D., et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12 (2015), 671–678.
Quadrato, G., Nguyen, T., Macosko, E.Z., Sherwood, J.L., Min Yang, S., Berger, D.R., Maria, N., Scholvin, J., Goldman, M., Kinney, J.P., et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545 (2017), 48–53.
Linaro, D., Vermaercke, B., Iwata, R., Ramaswamy, A., Libé-Philippot, B., Boubakar, L., Davis, B.A., Wierda, K., Davie, K., Poovathingal, S., et al. Xenotransplanted human cortical neurons reveal species-specific development and functional integration into mouse visual circuits. Neuron 104 (2019), 972–986.e6 This paper shows that human cortical neurons transplanted into the mouse brain display a prolonged developmental timeline for maturation, attested by morphological observations and electrophysiological recordings, suggestive of the intrinsic juvenile properties of developing human neurons.
Schörnig, M., Ju, X., Fast, L., Weigert, A., Schaffer, T., Ebert, S., Treutlein, B., Kasri, N.N., Peter, B., Hevers, W., et al. Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes. bioRxiv, 2020.
Schmidt, E.R.E., Zhao, H.T., Hillman, E.M.C., Polleux, F., Humanization of SRGAP2C expression increases cortico-cortical connectivity and reliability of sensory-evoked responses in the mouse brain. bioRxiv, 2019.
Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J.-E., Lambert, N., de Marchena, J., Jin, W.-L., Vanderhaeghen, P., Ghosh, A., Sassa, T., et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149 (2012), 923–935.
Sagner, A., Briscoe, J., Morphogen interpretation: concentration, time, competence, and signaling dynamics. Wiley Interdiscip Rev Dev Biol, 6, 2017, e271.
Levine, A.J., Brivanlou, A.H., Proposal of a model of mammalian neural induction. Dev Biol 308 (2007), 247–256.
Bagley, J.A., Reumann, D., Bian, S., Lévi-strauss, J., Knoblich, J.A., Fused cerebral organoids model interactions between brain regions. Nat Methods, 14, 2017.
Birey, F., Andersen, J., Makinson, C.D., Islam, S., Wei, W., Huber, N., Fan, H.C., Metzler, K.R.C., Panagiotakos, G., Thom, N., et al. Assembly of functionally integrated human forebrain spheroids. Nature 545 (2017), 54–59.
Xiang, Y., Tanaka, Y., Patterson, B., Lee, S., Weissman, S.M., Park, I., Xiang, Y., Tanaka, Y., Patterson, B., Kang, Y., et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration resource fusion of regionally specified hPSC-derived organoids models human brain development. Stem Cell 21 (2017), 383–398.e7 These studies show the fusion of two forebrain region-specific organoids from dorsal and ventral identities. These fusion organoids allow the study of intricated developmental process, such as human interneuron migration into the cortex. These fusion models or ‘assembloids’ may be essential to model the interaction between different brain regions.
Xiang, Y., Tanaka, Y., Cakir, B., Patterson, B., Kim, K.-Y., Sun, P., Kang, Y.-J., Zhong, M., Liu, X., Patra, P., et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24 (2019), 487–497.e7 This study reported the presence of reciprocal thalamo-cortical neural projections established following the fusion of human thalamic (hThO) and human cortical (hCO) organoids. This study illustrates the possibility of modeling circuit organization between two distinct brain region organoids.
Jo, J., Xiao, Y., Sun, A.X., Cukuroglu, E., Tran, H.-D., Göke, J., Tan, Z.Y., Saw, T.Y., Tan, C.-P., Lokman, H., et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19 (2016), 248–257.
Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., Sasai, Y., Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10 (2015), 537–550.
Maury, Y., Côme, J., Piskorowski, R.A., Salah-Mohellibi, N., Chevaleyre, V., Peschanski, M., Martinat, C., Nedelec, S., Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol 33 (2015), 89–96.
Meinhardt, A., Eberle, D., Tazaki, A., Ranga, A., Niesche, M., Wilsch-Bräuninger, M., Stec, A., Schackert, G., Lutolf, M., Tanaka, E.M., 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Rep 3 (2014), 987–999.
Dehay, C., Savatier, P., Cortay, V., Kennedy, H., Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J Neurosci 21 (2001), 201–214.
Li, H., Fertuzinhos, S., Mohns, E., Hnasko, T.S., Verhage, M., Edwards, R., Sestan, N., Crair, M.C., Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron 79 (2013), 970–986.
Gerstmann, K., Pensold, D., Symmank, J., Khundadze, M., Hubner, C.A., Bolz, J., Zimmer, G., Thalamic afferents influence cortical progenitors via ephrin A5-EphA4 interactions. Development 142 (2015), 140–150.
Molnár, Z., Luhmann, H.J., Kanold, P.O., Transient cortical circuits match spontaneous and sensory-driven activity during development. Science, 2020, 370.
Alzu'bi, A., Homman-Ludiye, J., Bourne, J.A., Clowry, G.J., Thalamocortical afferents innervate the cortical subplate much earlier in development in primate than in rodent. Cereb Cortex 29 (2019), 1706–1718.
Arenas, E., Denham, M., Villaescusa, J.C., How to make a midbrain dopaminergic neuron. Development 142 (2015), 1918–1936.
Kim, H., Park, H.J., Choi, H., Chang, Y., Park, H., Shin, J., Kim, J., Lengner, C.J., Lee, Y.K., Kim, J., Modeling G2019S-LRRK2 sporadic Parkinson's disease in 3D midbrain organoids. Stem Cell Rep 12 (2019), 518–531.
Ishida, Y., Kawakami, H., Kitajima, H., Nishiyama, A., Sasai, Y., Inoue, H., Muguruma, K., Vulnerability of purkinje cells generated from spinocerebellar ataxia type 6 patient-derived iPSCs. Cell Rep 17 (2016), 1482–1490.
Buchholz, D.E., Carroll, T.S., Kocabas, A., Zhu, X., Behesti, H., Faust, P.L., Stalbow, L., Fang, Y., Hatten, M.E., Novel genetic features of human and mouse Purkinje cell differentiation defined by comparative transcriptomics. Proc Natl Acad Sci U S A, 2020 This study shows that hPSC-derived Purkinje cells and in vivo mouse developing Purkinje neurons share similar gene expression patterns but a different timeline for gene expression. This study also identifies novel human Purkinje neuron-specific markers, emphasizing the importance of models using human neurons.
Ogura, T., Sakaguchi, H., Miyamoto, S., Takahashi, J., Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells. Development, 145, 2018 dev162214.
Velasco, S., Kedaigle, A.J., Simmons, S.K., Nash, A., Rocha, M., Quadrato, G., Paulsen, B., Nguyen, L., Adiconis, X., Regev, A., et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570 (2019), 523–527 This study assesses the fidelity of brain organoid models and their reproducibility by introducing the use of bioreactors and comparing cortical organoids and primary fetal cortical samples by single-cell RNA sequencing. This study shows that cell identity within organoids is highly reproducible among experiments and that it matches cortical primary samples.
Camp, J.G., Badsha, F., Florio, M., Kanton, S., Gerber, T., Wilsch-Bräuninger, M., Lewitus, E., Sykes, A., Hevers, W., Lancaster, M., et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A 112 (2015), 15672–15677.
Kelava, I., Lancaster, M.A., Stem cell models of human brain development. Cell Stem Cell 18 (2016), 736–748.
Pașca, A.M., Park, J.Y., Shin, H.W., Qi, Q., Revah, O., Krasnoff, R., O'Hara, R., Willsey, A.J., Palmer, T.D., Pașca, S.P., Human 3D cellular model of hypoxic brain injury of prematurity. Nat Med, 25, 2019.
Laguesse, S., Creppe, C., Nedialkova, D.D., Prevot, P.P., Borgs, L., Huysseune, S., Franco, B., Duysens, G., Krusy, N., Lee, G., et al. A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell 35 (2015), 553–567.
Giandomenico, S.L., Mierau, S.B., Gibbons, G.M., Wenger, L.M.D., Masullo, L., Sit, T., Sutcliffe, M., Boulanger, J., Tripodi, M., Derivery, E., et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat Neurosci 22 (2019), 669–679 Here the authors show that organoids cultured in the air-liquid interface improved neuronal survival and axonal outgrowth. Interestingly, organotypic cultures showed organoid axonal innervation of mouse spinal cord explants.
Qian, X., Su, Y., Adam, C.D., Deutschmann, A.U., Pather, S.R., Goldberg, E.M., Su, K., Li, S., Lu, L., Jacob, F., et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26 (2020), 766–781.e9.
Mansour, A.A., Gonçalves, J.T., Bloyd, C.W., Li, H., Fernandes, S., Quang, D., Johnston, S., Parylak, S.L., Jin, X., Gage, F.H., An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36 (2018), 432–441.
Cakir, B., Xiang, Y., Tanaka, Y., Kural, M.H., Parent, M., Kang, Y.-J., Chapeton, K., Patterson, B., Yuan, Y., He, C.-S., et al. Engineering of human brain organoids with a functional vascular-like system. Nat Methods 16 (2019), 1169–1175 This study shows the formation of cortical organoids with ETV2 expressing cells that form a complex vascular-like network with blood-brain-barrier characteristics.
Pellegrini, L., Bonfio, C., Chadwick, J., Begum, F., Skehel, M., Lancaster, M.A., Human CNS barrier-forming organoids with cerebrospinal fluid production. Science, 2020 This paper shows the formation of choroid plexus organoids (ChP) with the formation of a selective barrier and CSF-like fluid secretion. Interestingly, the transcriptomic and proteomic signature of ChP matched the in vivo choroid plexus.
Laura, Pellegrini, Anna, A., Donna, L.M., Max, J.K., David, P., Carter, A.P., James, C., Madeline, L., Lancaster, A., SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF-barrier in human brain organoids. Cell Stem Cell, 2020.
Trujillo, C.A., Gao, R., Negraes, P.D., Gu, J., Buchanan, J., Preissl, S., Wang, A., Wu, W., Haddad, G.G., Chaim, I.A., et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25 (2019), 558–569.e7.