[en] The formation and rapid drainage of supraglacial lakes (SGL) influences the mass balance and dynamics of the Greenland Ice Sheet (GrIS). Although SGLs are expected to spread inland during the 21st century due to atmospheric warming, less is known about their future spatial distribution and volume. We use GrIS surface elevation model and regional climate model outputs to show that at the end of the 21st century (2070–2099) approximately 9.8 ± 3.9 km3 (+113% compared to 1980‐2009) and 12.6 ± 5 km3 (+174%) of meltwater could be stored in SGLs under moderate and high representative concentration pathways (RCP 4.5 and 8.5), respectively. The largest increase is expected in the northeastern sector of the GrIS (191% in RCP 4.5 and 320% in RCP 8.5), whereas in west Greenland, where the most SGLs are currently observed, the future increase will be relatively moderate (55% in RCP 4.5 and 68% in RCP 8.5).
Research Center/Unit :
Sphères - SPHERES
Disciplines :
Earth sciences & physical geography
Author, co-author :
Ignéczi, A.
Sole, A.
Livingstone, S.
Leeson, A.
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Selmes, N.
Gourmelen, N.
Briggs, K.
Language :
English
Title :
Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century
Publication date :
31 August 2016
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley, Washington, United States - District of Columbia
Issue :
43
Pages :
9729– 9738
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Banwell, F. A., M. Caballero, S. N. Arnold, F. N. Glasser, M. L. Cathles, and R. D. MacAyeal (2014), Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: A comparative study, Ann. Glaciol., 55(66), 1–8.
Bartholomew, I., P. Nienow, D. Mair, A. Hubbard, M. King, and A. Sole (2010), Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411.
Box, J. E., and K. Ski (2007), Remote sounding of Greenland supraglacial melt lakes: Implications for subglacial hydraulics, J. Glaciol., 53(181), 257–265.
Chandler, M. D., et al. (2013), Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers, Nat. Geosci., 6, 195–198.
Christie, W. D. F., G. R. Bingham, N. Gourmelen, B. F. S. Tett, and A. Muto (2016), Four-decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica, Geophys. Res. Lett., 43, 5741–5749, doi:10.1002/2016GL068972.
Colgan, W., K. Steffen, S. W. McLamb, W. Abdalati, H. Rajaram, R. Motyka, T. Phillips, and R. Anderson (2011), An increase in crevasse extent, West Greenland: Hydrologic implications, Geophys. Res. Lett., 38, L18502, doi:10.1029/2011GL048491.
Das, S. B., I. Joughin, M. D. Benn, I. M. Howat, M. A. King, D. Lizarralde, and M. P. Bhatia (2008), Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage, Science, 320(5877), 963–964.
Doyle, S. H., A. Hubbard, A. A. W. Fitzpatrick, D. van As, A. B. Mikkelsen, R. Pettersson, and B. Hubbard (2014), Persistent flow acceleration within the interior of the Greenland Ice Sheet, Geophys. Res. Lett., 41, 899–905, doi:10.1002/2013GL058933.
Echelmeyer, K., T. S. Clarke, and W. D. Harrison (1991), Surficial glaciology of JakobshavnIsbrae, West Greenland: Part I. Surface-morphology, J. Glaciol., 37(127), 368–382.
Fahnestock, M., R. Bindschadler, R. Kwok, and K. Jezek (1993), Greenland Ice Sheet surface properties and ice dynamics from ERS-1 SAR imagery, Science, 262, 1530–1534.
Fahnestock, M., W. Abdalati, I. Joughin, J. Brozena, and P. Gogineni (2001), High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland, Science, 294, 2338–2342.
Fettweis, X., B. Franco, M. Tedesco, H. J. van Angelen, M. T. J. Lenaerts, R. M. van den Broeke, and H. Gellée (2013), Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR, Cryosphere, 7, 469–489.
Fitzpatrick, A. A. W., A. L. Hubbard, J. E. Box, D. J. Quincey, D. Van As, A. P. B. Mikkelsen, S. H. Doyle, C. F. Dow, B. Hasholt, and G. A. Jones (2014), A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland, Cryosphere, 8(1), 107–121.
Greuell, W., C. H. Reijmer, and J. Oerlemans (2002), Narrowband-to-broadband albedo conversion for glacier ice and snow based on aircraft and near-surface measurements, Remote Sens. Environ., 82, 48–63.
Gudmundsson, G. H. (2003), Transmission of basal variability to a glacier surface, J. Geophys. Res., 108(B5), 2253, doi:10.1029/2002JB002107.
Gumley, L., J. Descloitres, and J. Schmaltz (2007), Creating reprojected MODIS True Color images: A Tutorial, 19 pp. [Available at ftp://ftp.ssec.wisc.edu/pub/IMAPP/MODIS/TrueColor.]
Hawkings, R. J., et al. (2015), The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet, Geochem. Perspect. Lett., 1, 94–104.
Hawley, R. L., A. Shepherd, R. Cullen, V. Helm, and D. J. Wingham (2009), Ice-sheet elevations from across-track processing of airborne interferometric radar altimetry, Geophys. Res. Lett., 36, L22501, doi:10.1029/2009GL040416.
Howat, I. M., S. de la Pena, J. H. van Angelen, J. T. M. Lenaerts, and M. R. Van der Broeke (2013), Brief communication “Expansion of meltwater lakes on the Greenland Ice Sheet”, Cryosphere, 7(1), 201–204.
Howat, M. I., A. Negrete, and E. B. Smith (2014), The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets, Cryosphere, 8, 1509–1518.
Irvine-Fynn, T. D. L., A. J. Hodson, B. J. Moorman, G. Vatne, and A. L. Hubbard (2011), Polythermal glacier hydrology: A review, Rev. Geophys., 49, RG4002, doi:10.1029/2010RG000350.
Johansson, A. M., P. Jansson, and I. A. Brown (2013), Spatial and temporal variations in lakes on the Greenland Ice Sheet, J. Hydrol., 476, 314–320.
Joughin, I., M. Fahnestock, and J. Bamber (2000), Ice flow in the northeast Greenland ice stream, Ann. Glaciol., 31, 141–146.
Joughin, I., M. Fahnestock, D. MacAyeal, L. J. Bamber, and P. Gogineni (2001), Observation and analysis of ice flow in the largest Greenland ice stream, J. Geophys. Res., 106(24), 34,021–34,034, doi:10.1029/2001JD900087.
Joughin, I., E. B. Smith, E. D. Shean, and D. Floricioiu (2013), Brief communication: Further summer speedup of Jakobshavn Isbræ, Cryosphere, 8, 209–214.
Koenig, S. L., et al. (2015), Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet, Cryosphere, 9, 1333–1342.
Krawczynski, M. J., M. D. Behn, S. B. Das, and I. Joughin (2009), Constrains on the lake volume required for hydrofracture through ice sheets, Geophys. Res. Lett., 36, L10501, doi:10.1029/2008GL036765.
Lampkin, J. D. (2011), Supraglacial lake spatial structure in western Greenland during the 2007 ablation season, J. Geophys. Res., 116, F04001, doi:10.1029/2010JF001725.
Lampkin, J. D., and J. Vanderberg (2011), A preliminary investigation of the influence of basal and surface topography on supraglacial lake distribution near JakobshavnIsbrae, western Greenland, Hydrol. Processes, 25(21), 3347–3355.
Langley, S. E., A. A. Leeson, R. C. Stokes, and R. S. S. Jamieson (2016), Seasonal evolution of supraglacial lakes on an east Antarctic outlet glacier, Geophys. Res. Lett., 43, doi:10.1002/2016GL069511.
Leeson, A. A., A. Shepherd, S. Palmer, A. Sundal, and X. Fettweis (2012), Simulating the growth of supraglacial lakes at the western margin of the Greenland Ice Sheet, Cryosphere, 6(5), 1077–1086.
Leeson, A. A., A. Shepherd, A. V. Sundal, A. M. Johansson, N. Selmes, K. Briggs, A. E. Hogg, and X. Fettweis (2013), A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland Ice Sheet, J. Glaciol., 59(218), 1179–1188.
Leeson, A. A., A. Shepherd, K. Briggs, I. Howat, X. Fettweis, M. Morlighem, and E. Rignot (2015), Supraglacial lakes on the Greenland Ice Sheet advance inland under warming climate, Nat. Clim. Change, 5, 51–55.
Liang, Y.-L., W. Colgan, Q. Lv, K. Steffen, W. Abdalati, J. Stroeve, D. Gallaher, and N. Bayou (2012), A decadal investigation of supraglacial lakes in west Greenland using a fully automatic detection and tracking algorithm, Remote Sens. Environ., 123, 127–138.
Livingstone, J. S., D. C. Clark, J. Woodward, and J. Kingslake (2013), Potential subglacial drainage pathways beneath the Antarctic and Greenland Ice Sheets, Cryosphere, 7, 1721–1740.
Lüthje, M., L. T. Pedersen, N. Reeh, and W. Greuell (2006), Modelling the evolution of supraglacial lakes on the west Greenland Ice Sheet margin, J. Glaciol., 52(179), 608–618.
MacGregor, A. J., et al. (2016), A synthesis of the basal thermal state of the Greenland Ice Sheet, J. Geophys. Res. Earth Surf., 121, 1328–1350, doi:10.1002/2015JF003803.
Maritorena, S. A., A. Morel, and B. Gentili (1994), Diffuse reflectance of oceanic shallow waters: Influence of water depth and bottom albedo, Limnol. Oceanogr., 39(7), 1689–1703.
McMillan, M., P. Nienow, A. Shepherd, T. Benham, and A. Sole (2007), Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet, Earth Planet. Sci. Lett., 262(3–4), 484–492.
Morlighem, M., E. Rignot, J. Mouginot, H. Seroussi, and E. Larour (2014), Deeply incised submarine glacial valleys beneath the Greenland Ice Sheet, Nat. Geosci., 7, 418–422.
Morriss, B. F., R. L. Hawley, J. W. Chipman, L. C. Andrews, G. A. Catania, M. J. Hoffman, M. P. Lüthi, and T. A. Neumann (2013), A ten-year record of supraglacial lake evolution and rapid drainage in west Greenland using an automated processing algorithm for multispectral imagery, Cryosphere, 7(6), 1869–1877.
Phillips, T., H. Rajaram, and K. Steffen (2010), Cryo-hydrologic warming: A potential mechanism for rapid thermal response of ice sheet, Geophys. Res. Lett., 37, L20503, doi:10.1029/2010GL044397.
Poinar, K., I. Joughin, B. S. Das, D. M. Behn, M. T. J. Lenaerts, and R. M. van den Broeke (2015), Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland, Geophys. Res. Lett., 42, 1800–1807, doi:10.1002/2015GL063192.
Rogozhina, I., G. A. Petrunin, P. M. A. Vaughan, B. Steinberger, V. J. Johnson, K. M. Kaban, R. Calov, F. Rickers, M. Thomas, and I. Koulakov (2016), Melting at the base of the Greenland ice sheet explained by Iceland hotspot history, Nat. Geosci., 9, 366–369.
Schoof, C. (2010), Ice-sheet acceleration driven by melt supply variability, Nature, 468, 803–806.
Selmes, N., T. Murray, and T. D. James (2011), Fast-draining lakes on the Greenland Ice Sheet, Geophys. Res. Lett., 38, L15501, doi:10.1029/2011GL047872.
Selmes, N., T. Murray, and T. D. James (2013), Characterizing supraglacial lake drainage and freezing on the Greenland Ice Sheet, Cryosphere Discuss., 7(1), 475–505.
Sergienko, O. V. (2013), Glaciological twins: Basally controlled subglacial and supraglacial lakes, J. Glaciol., 59(213), 3–8.
Shepherd, A., A. Hubbard, P. Nienow, M. King, M. McMillan, and I. Joughin (2009), Greenland Ice Sheet motion coupled with daily melting in late summer, Geophys. Res. Lett., 36, L01501, doi:10.1029/2008GL035758.
Smith, C. L., et al. (2015), Efficient meltwater drainage through supraglacial stream and rivers on the southwest Greenland ice sheet, Proc. Natl. Acad. Sci. U.S.A., 112(4), 1001–1006.
Smith, C. R., and S. K. Baker (1981), Optical properties of the clearest natural waters (200–800 nm), Appl. Opt., 20(2), 177–184.
Sneed, A. W., and S. G. Hamilton (2007), Evolution of melt pond volume on the surface of the Greenland Ice Sheet, Geophys. Res. Lett., 34, L03501, doi:10.1029/2006GL028697.
Sole, A., P. Nienow, I. Bartholomew, D. Mair, T. Cowton, A. Tedstone, and A. M. King (2013), Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers, Geophys. Res. Lett., 40, 3940–3944, doi:10.1002/grl.50764.
Sole, J. A., F. W. D. Mair, W. P. Nienow, D. I. Bartholomew, A. M. King, J. M. Burke, and I. Joughin (2011), Seasonal speedup of a Greenland marine terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology, J. Geophys. Res., 116, F03014, doi:10.1029/2010JF001948.
Stevens, A. L., D. M. Behn, J. J. McGuire, B. S. Das, I. Joughin, T. Herring, E. D. Shean, and A. M. King (2015), Greenland supraglacial lake drainages triggered by hydrologically induced basal slip, Nature, 522, 73–76.
Sundal, A. V., A. Shepherd, P. Nienow, E. Hanna, S. Palmer, and P. Huybrechts (2009), Evolution of supra-glacial lakes across the Greenland Ice Sheet, Remote Sens. Environ., 113(10), 2164–2171.
Tedesco, M., M. Lüthje, K. Steffen, N. Steiner, X. Fettweis, I. Willis, N. Bayou, and A. Banwell (2012), Measurement and modelling of ablation of the bottom of supraglacial lakes in western Greenland, Geophys. Res. Lett., 39, L02502, doi:10.1029/2011GL049882.
Tedesco, M., T. Mote, X. Fettweis, E. Hanna, J. Jeyaratnam, F. J. Booth, R. Datta, and K. Briggs (2016), Arctic cut-off high drives the poleward shift of new Greenland melting record, Nat. Commun., 7, 11723, doi:10.1038/ncomms11723.
Tedstone, J. A., W. P. Nienow, N. Gourmelen, A. Dehecq, D. Goldberg, and E. Hanna (2015), Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming, Nature, 526, 692–695.
van der Veen, C. J. (2007), Fracture propagation as means of rapidly transferring surface melt-water to the base of glaciers, Geophys. Res. Lett., 34, L03501, doi:10.1029/2006GL028385.
Whillans, M. I., and J. S. Johnsen (1983), Longitudinal variations in glacial flow: Theory and test using data from the Byrd Station strain network, Antarctica, J. Glaciol., 29(101), 78–97.
Willis, J. M., G. B. Herried, G. M. Bevis, and E. R. Bell (2015), Recharge of a subglacial lake by surface meltwater in northeast Greenland, Nature, 518, 223–227.
Yang, K., C. L. Smith, W. V. Chu, J. C. Gleason, and M. Li (2015), A caution on the use of surface digital elevation models to simulate supraglacial hydrology of the Greenland Ice Sheet, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 8(11), 5212–5224.
Zwally, H. J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen (2002), Surface melt-induced acceleration of Greenland Ice-Sheet flow, Science, 297, 218–222.
Zwally, H. J., B. M. Giovinetto, A. M. Beckley, and L. J. Saba (2012), Antarctic and Greenland Drainage Systems, GSFC Cryospheric Sciences Laboratory. [Available at http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.]
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.