[en] The Balkan Peninsula is a biodiversity hotspot and hosts numerous mountain lakes, which offer a refuge for a multitude of species. However, previous pristine habitats have been deeply affected by anthropogenic change, such as non-native fish introductions, which calls for multi-species considerations in the last remaining unaltered habitats. We carried out abiotic measurements and biodiversity assessments in two neighbouring alpine lakes, Lakes Leqinat and Drelaj in the Bjeshkët e Nemuna National Park in Kosovo, in August 2018. Lake Leqinat is a permanent, stratified water body and exhibits weak oxygen depletion below 3 m. Phytoplankton was dominated by chrysophycean, cryptophycean and chlorophycean algae. Zooplankton consisted of five rotifer species and Daphnia longispina. A mark-recapture experiment yielded a population of alpine newts (Ichthyosaura alpestris) of nearly 4 000 adult individuals. In contrast, cold water from the surrounding karst seeps into Lake Drelaj, which is a well-oxygenated temporary lake. Hence phytoplankton and zooplankton biomasses were considerably lower than in Lake Leqinat. Phytoplankton was dominated by cryptophycean, chlorophycean, and bacillariophycean algae. Zooplankton consisted of the diaptomid copepod Mixodiaptomus tatricus, the cladoceran Daphnia rosea, and the anostracan Chirocephalus diaphanus. Conservation efforts should ensure that Lake Leqinat remains unstocked as introduced fish would probably destroy the natural community.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Levkov, Zlatko; Ss. Cyril & Methodius University in Skopje
Jersabek, Christian D.; University of Salzburg
Vorage, Marcel; Salzburg University of Education Stefan Zweig
Denoël, Mathieu ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Écologie et de Conservation des Amphibiens
First limnological characterization of Lakes Leqinat and Drelaj in Bjeshkët e Nemuna National Park, Kosovo
Publication date :
January 2021
Journal title :
Eco.mont
ISSN :
2073-106X
eISSN :
2073-1558
Publisher :
The Austrian Academy of Sciences Press, Austria
Volume :
13
Issue :
1
Pages :
12-21
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique ADA - Austrian Development Agency
Funding text :
Funding for this study was provided by the Austrian Development Cooperation (HERAS project K-04-2017). Field work was carried out under permit 2566/18/336-DMMU, issued by the Ministry of Environment and Spatial Planning (21/05/2018), Kosovo.
Arntzen, J.W, A. Smithson & R.S. Oldham 1999. Marking and tissue sampling effects on body condition and survival in the newt Triturus cristatus. Journal of Herpetology 33: 567–576. Doi: 10.2307/1565573
Belmonte, G., G. Alfonso, N. Beadini, P. Kotori, S. Mali, S. Moscatello & B. Shkurtaj 2018. An inventory of invertebrate fauna of Albania and Macedonia lakes. Thalassia Salentina 40: 27–38. Doi: 10.1285/i15910725v40sup2p27
Bledzki, L.A. & J.I. Rybak 2016. Freshwater crustacean Zpoplankton of Europe. Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. Doi: 10.1007/978-3-319-29871-9
Brancelj, A. 1999. The extinction of Arctodiaptomus alpinus (Copepoda) following the introduction of charr into a small Alpine lake Dvojno Jezero (NW Slovenia). Aquatic Ecology 33: 355–361. Doi: 10.1023/A:1009972108485
Brendonck, L. 1996. Diapause, quiescence, hatching requirements: what we can learn from large freshwater branchiopods (Crustacea: Branchiopoda: Anostraca, Notostraca, Conchostraca), In: Alekseev, V.R. & G. Fryer (eds.), Diapause in the Crustacea. Hydrobiologia 320: 85–97. Doi: 10.1007/BF00016809
Brtek, J. & A. Thiéry 1995. The geographic distribution of the European branchiopods (Anostraca, Notostraca, Spinicaudata, Laevicaudata). Hydrobiologia 298: 263–280. Doi: 10.1007/BF00033821
Darwall, D., V. Bremerich, A. De Wever, A.I. Dell, J. Freyhof, M.O. Gessner, H.-P. Grossart, I. Harrison, K. Irvine, S.C. Jähnig, J.M. Jeschke, J.J. Lee, C. Lu, A.M. Lewandowska, M.T. Monaghan, J.C. Nejstgaard, H. Patricio, A. Schmidt-Kloiber, S.N. Stuart, M. Thieme, K. Tockner, E. Turak & O. Weyl 2018. The Alliance for Freshwater Life: A global call to unite efforts for freshwater biodiversity science and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 28: 1015–1022. Doi: 10.1002/aqc.2958
Decraemer, W, U. Eisendle-Flöckner & E. Abebe 2019. Nematoda. In: Thorp J.H. & A.P. Covich (eds.), Freshwater Invertebrates, Fourth Edition, Volume IV, Keys to the Palaearctic Fauna: 269–299. London. Doi: 10.1016/B978-0-12-804223-6.00001-9
Deisinger, G. 1984. Leitfaden zurBestimmung der planktischen Algen der Kärntner Seen und ihrer Biomasse. Kärntner Institut für Seenforschung. [In German]
Demeter, L. & C. Mori 2004. Spatial distribution and habitat characteristics of Chirocephalus diaphanus (Branchiopoda: Anostraca) in the Retezat National Park (Southern Carphathians, Romania). Biota 5: 11–23.
Denoël, M. 2003. Avantages sélectifs d’un phénotype hétérochronique. Eco-éthologie des populations pédomorphiques du Triton alpestre, Triturus alpestris (Amphibia, Caudata). Cahiers d’éthologie fondamentale et appliquée, animale et humaine 21: 1–327. [In French]
Denoël, M. 2017. On the identification of paedomorphic and overwintering larval newts based on cloacal shape: review and guidelines. Current Zoology 63: 165–173. Doi: 10.1093/cz/zow054
Denoël, M., R. Duguet, G. Džukić, M.L. Kalezić & S. Mazzotti 2001. Biogeography and ecology of paedomorphosis in Triturus alpestris (Amphibia, Caudata). Journal of Biogeography 28: 1271–1280. Doi: 10.1046/j.1365-2699.2001.00634.x
Denoël, M., G. Džukić & M.L. Kalezić 2005. Effect of widespread fish introductions on paedomorphic newts in Europe. Conservation Biology 19: 162–170. Doi: 10.1111/j.1523-1739.2005.00001.x
Denoël, M., G.F. Ficetola, R. Ćirović, D. Radović, D. Džukić, M.L. Kalezić & T.D. Vukov 2009. A multiscale approach to facultative paedomorphosis of European newts in the Montenegrin karst: distribution pattern, environmental variables and conservation. Biological Conservation 142: 509–517. Doi: 10.1016/j.biocon.2008.11.008
Denoël, M., G.F. Ficetola, N. Sillero, G. Džukić, M.L. Kalecić, T. Vukov, I. Muhovic, V. Ikovic & B. Lejeune 2019. Traditionally managed landscapes do not prevent amphibian decline and the extinction of paedomorphosis. Ecological Monographs 89: e01347. Doi: 10.1002/ecm.1347
Denoël, M. & R. Schabetsberger 2003. Resource partitioning in two heterochronic populations of Greek Alpine newts, Triturus alpestris veluchiensis. Acta Oecologica 24: 55–64. Doi: 10.1016/S1146-609X(03)00043-2
Dodson, S.I. 1970. Complementary feeding niches sustained by size-selective predation. Limnology and Oceanography 15: 131–137.
Downing, J.A. & F.H. Rigler 1984. A manual on methods for the assessment of secondary production in fresh waters. IBP-Handbook 17, 2nd edition. Oxford.
Džukić, G., M. Cvijanović, A. Urošević, T.D. Vukov, N. Tomasevic Kolarov, M. Slipjepcević, A. Ivanović & M.L. Kalezić 2015. The batrachological collections of the Institute for Biological Research “Siniša Stanković”. Bulletin of the Natural History Museum 8: 118–167. Doi: 10.5937/bnhmb1508118D
Džukić, G., M.L. Kalezić, M. Tvrtković & A. Djorović 1990. An overview of the occurrence of paedomorphosis in Yugoslav newt (Triturus, Salaman-dridae) populations. British Herpetological Society Bulletin 34: 16–22.
Gaviria-Melo, S., L. Forró, C.D. Jersabek & R. Schabetsberger 2005. Checklist and distribution of cladocerans and leptodorans (Crustacea: Branchiopoda) from Austria. Annalen des Naturhistorischen Museums in Wien 106: 145–216.
Griffiths, H.I., B. Kryštfek & J.M. Reed 2004. Balkan Biodiversity. Pattern and Process in the European Hotspot. Dordrecht. Dor. 10.1007/978-1-4020-2854-0
Gutleb, B. 1991. Phalangengeneration und eine neue Methode zur Individualerkennung bei Bergmolchen, Triturus alpestris (Laurenti, 1768) (Caudata. Salamandridae). Herpetozoa 4. 117–125. [In German]
Ibrahimi, H., L. Grapci-Kotori, A. Bilalli, A. Qamili & R. Schabetsberger 2019. Contribution to the knowledge of the caddisfly fauna (Insecta. Trichoptera) of Leqinat lakes and adjacent streams in Bjeshkët e Nemuna (Kosovo). Natura Croatica 28. 35–44. Doi: 10.20302/NC.2019.28.3
Jersabek, C.D., F. Brancelj, F. Stoch & R. Schabets-berger 2001. Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia 453/454. 309–324. Doi. 10.1023/A.1013113327674
Kalezić, M.L., G. Džukić & A. Popadić 1989. Paedomorphosis in Yugoslav Alpine newt (Triturus alpestris) populations. morphometric variability and sex ratio. Arhiv Bioloskih Nauka 41. 67–79.
Knapp, R.A., C.P. Hawkins, J. Ladau & J. McClory 2005. Fauna of Yosemite National Park has resistance but high resilience to fish introductions. Ecological Applications 15. 835–847. Doi. 10.1890/04-0619
Knapp, R.A., K.E. Matthews & O. Sarnelle 2001. Resistance and resilience of Alpine lake fauna to fish introductions. Ecological Monographs 71. 401–421. Doi. 10.1890/0012-9615(2001)071[0401.RAROAL]2.0. CO;2
Krebs, C.J. 1989. Ecological methodology. New York. Lange-Bertalot, H. & A. Steindorf 1996. Rote Liste der limnischen Kieselalgen (Bacillariophyceae) Deutschlands. Schriftenreihe für Vegetationskunde 28. 633–677. [In German]
Lejeune, B., N. Sturaro, G. Lepoint & M. Denoël 2018. Facultative paedomorphosis as a mechanism promoting intraspecific niche differentiation. Oikos 127. 427–439. Doi. 10.1111/oik.04714
Mancinelli, G., S. Mali & S. Belmonte 2019. Species richness and taxonomic distinctness of zooplankton in ponds and small lakes from Albania and North Macedonia. the role of bioclimatic factors. Water 11. 2384. Doi. 10.3390/w11112384
Miró, A., I. Sabás & M. Ventura 2018. Large negative effect of non-native trout and minnows on Pyrenean lake amphibians. Biological Conservation 218. 144–153. Doi. 10.1016/j.biocon.2017.12.030
Nychka, D., R. Furrer, J. Paige & S. Sain 2017. Fields: Tools for spatial data, Rpackage version 10.0. Available at. https.//cran.r-project.org/web/packages/fields Doi. 10.5065/D6W957CT
Petrusek, A., A. Hobæk, J.P. Nillsen, M. Skage, M. Ćerný, N. Brede & K. Schwenk 2008. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zoologica Scripta 37. 507–519. DOI. 10.1111/j.1463-6409.2008.00336.x
Pilliod, D.S. & C.R. Peterson 2001. Local and landscape effects of introduced trout on amphibians in historically fishless watersheds. Ecosystems 4. 322–333. Doi. 10.1007/s10021-001-0014-3
Radovanović, M. 1951. A new race of the Alpine newt from Yugoslavia. British Journal of Herpetology 1. 93–97.
Radovanović, M. 1961. Neue Fundorte neotenischer Bergmolche in Jugoslawien. Zoologischer Anzeiger 166. 206–218. [In German]
Ruttner-Kolisko, A. 1977. Suggestions for biomass calculation of plankton rotifers. Archiv für Hydrobiologie. Beihefte. Ergebnisse der Limnologie 8. 71–76.
Schabetsberger, R., S. Grill, G. Hauser & P. Wukits 2006. Zooplankton successions in neighboring lakes with contrasting impacts of amphibian and fish predators. International Review of Hydrobiology 91. 197–221. Doi. 10.1002/iroh.200610867
Schabetsberger, R. & C.D. Jersabek 1995. Alpine newts (Triturus alpestris) as top predators in a high-altitude karst lake: daily food consumption and the impact on the copepod Arctodiaptomus alpinus. Freshwater Biology 33. 47–61. Doi. 10.1111/j.1365-2427.1995.tb00385.x
Schabetsberger, R., M. Luger, G. Drozdowski & A. Jagsch 2009. Only the small survive. Monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biological Invasions 11. 1335–1345. Doi. 10.1007/s10530-008-9341-z
Schwoerbel, J. 1993. Methoden der Hydrobiologie. Stuttgart, Jena. [In German]
Tiberti, R., A. von Hardenberg & A. Bogliani 2013. Ecological impact of introduced fish in high-altitude lakes. a case study from the European Alps. Hydrobiologia 724. 1–19. Doi. 10.1007/s10750-013-1696-1
Urošević, V 1997. Periphyton algae in the system of Djeravica Lakes on the spring branch of Erenik. University Thought, Natural Sciences 3. 11–21.
Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-methodik. Internationale Vereinigung für Theoretische und Angewandte Limnologie: Mitteilungen 9. 1–38. [In German]
Ventura, M., R. Tiberti, T. Buchaca, D. Buñay, I. Sabás & A. Miró 2017. Why should we preserve fish-less high mountain lakes? In. Catalan, J., J.M. Ninot & M. Aniz (eds.), High Mountain Conservation in a Changing World. Advances in Global Change Research 62. 181–205. Berlin, Germany. Doi. 10.1007/978-3-319-55982-7_8
Vidakovic, D., P.H. Hamilton & Z. Levkov 2019. Neidiopsis borealis sp. nov., a new diatom species from the mountain Shar Planina, Macedonia. Phytotaxa 402. 21–28. Doi. 10.11646/phytotaxa.402.1.3
Wissinger, S.A., A.J. Bohonak, H.H. Whiteman & W.S. Brown 1999. Subalpine wetlands in Colorado. Habitat permanence, salamander predation and invertebrate communities. In. Patzer, D.P., R.B. Rader & S.A. Wissinger (eds.), Invertebrates in Freshwater Wetlands of North America: Ecology and Management. 757–789. New York.
Zarattini, P., V Rossi, B. Mantovani & G. Mura 2002. A preliminary study in the use of RAPD markers in detecting genetic differences in hatching patterns of Chirocephalus diaphanus Prevost, 1803 (Crustacea: Anostraca). Hydrobiologia 486: 315–323. Doi: 10.1023/A:1021335826251
Živić, N., B. Miljanović, N. Labus & T. Jakšić 1997. Composition of zooplankton and macrozoobenthos in big and small Djeravica Lakes. University Thought, Natural Sciences 3: 51–56.