Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization
Pereira, J; Araujo, D.; Freitas, Patriciaet al.
2021 • In International Journal of Biological Macromolecules, 167, p. 85-92
Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Fortunato, Elvira
Reis, Maria
Freitas, Filomena
Language :
English
Title :
Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization
Publication date :
2021
Journal title :
International Journal of Biological Macromolecules
Bhuwal, A.K., Singh, G., Aggarwal, N.K., Goyal, V., Yadav, A., Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int. J. Biomater. 2013 (2013), 1–10, 10.1155/2013/752821.
Tan, G.-Y.A., Chen, C.-L., Li, L., Ge, L., Wang, L., Razaad, I.M.N., Li, Y., Zhao, L., Mo, Y., Wang, J.-Y., Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:3 (2014), 706–754, 10.3390/polym6030706.
Sun, Z., Ramsay, J.A., Guay, M., Ramsay, B.A., Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol. 74 (2007), 69–77, 10.1007/s00253-006-0655-4.
Follonier, S., Riesen, R., Zinn, M., Pilot-scale production of functionalized mcl-PHA from grape pomace supplemented with fatty acid. Chem. Biochem. Eng. Q. 29:2 (2015), 113–121, 10.15255/CABEQ.2014.2251.
Yun, H.S., Kim, D.Y., Chung, W.C., Kim, H.W., Yang, Y.K., Rhee, Y.H., Characterization of a tacky poly(3-hydroxyalkanoate) produced by Pseudomonas chlororaphis HS21 from palm kernel oil. J. Microbiol. Biotechnol. 13:1 (2003), 64–69.
Cruz, M.V., Freitas, F., Paiva, A., Mano, F., Dionísio, M., Ramos, A.M., Reis, M.A.M., Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnol. 33 (2016), 206–215, 10.1016/j.nbt.2015.05.005.
Cerrone, F., Davis, R., Kenny, S.T., Woods, T., O'Donovan, A., Gupta, V.K., Tuohy, M., Babu, R.P., O'Kiely, P., O'Connor, K., Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation. Bioresour. Technol. 191 (2015), 45–52, 10.1016/j.biortech.2015.04.128.
Muhr, A., Rechberger, E.M., Salerno, A., Reiterer, A., Malli, K., Strohmeier, K., Schober, S., Mittelbach, M., Koller, M., Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J. Biotechnol. 165 (2013), 45–51, 10.1016/j.jbiotec.2013.02.003.
Pappalardo, F., Fragalà, M., Mineo, P.G., Damigella, A., Catara, A.F., Palmeri, R., Rescifina, A., Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. Int. J. Biol. Macromol. 65 (2014), 89–96, 10.1016/j.ijbiomac.2014.01.014.
Liu, W., Chen, G.-Q., Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl. Microbiol. Biotechnol. 76:5 (2007), 1153–1159, 10.1007/s00253-007-1092-8.
Chen, G.-Q., A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem. Soc. Rev. 38:8 (2009), 2434–2446, 10.1039/B812677C.
Evcan, E., Tari, C., Production of bioethanol from apple pomace by using cocultures: conversion of agro-industrial waste to value added product. Energy J. 88 (2015), 775–782, 10.1016/j.energy.2015.05.090.
Follonier, S., Goyder, M.S., Silvestri, A.-C., Crelier, S., Kalman, F., Riesen, R., Zinn, M., Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Int. J. Biol. Macromol. 71 (2014), 42–52, 10.1016/j.ijbiomac.2014.05.061.
Rebocho, A.T., Pereira, J.R., Freitas, F., Neves, L.A., Alves, V.D., Sevrin, C., Grandfils, C., Reis, M.A.M., Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Appl. Food Biotechnol. 6:1 (2019), 71–82, 10.22037/afb.v6i1.21793.
de Meneses, L., Pereira, J.R., Sevrin, C., Grandfils, C., Paiva, A., Susana, B., Reis, M.A.M., Freitas, F., Pseudomonas chlororaphis as a multiproducts platform: conversion of glycerol into high-value biopolymers and phenazines. New Biotechnol. 55 (2020), 84–90, 10.1016/j.nbt.2019.10.002.
Pereira, J.R., Araujo, D., Marques, A.C., Neves, L.A., Grandfils, C., Sevrin, C., Alves, V.D., Fortunato, E., Reis, M.A.M., Freitas, F., Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int. J. Biol. Macromol. 122 (2019), 1144–1151, 10.1016/j.ijbiomac.2018.09.064.
Ruiz, C., Kenny, S.T., Narancic, T., Babu, R., O'Connor, K., Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. J. Biotechnol. 306 (2019), 9–15, 10.1016/j.jbiotec.2019.08.020.
Antunes, S., Freitas, F., Sevrin, C., Grandfils, C., Reis, M.A.M., Production of FucoPol by Enterobacter A47. Bioresour. Technol. 227 (2017), 66–73, 10.1016/j.biortech.2016.12.018.
Brandl, H., Gross, R.A., Lenz, R.W., Fuller, R.C., Pseudomonas oleovorans as a source of poly(β-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 54:8 (1988), 1977–1982.
Freitas, F., Alves, V.D., Gouveia, A.R., Pinheiro, C., Torres, C.A.V., Grandfils, C., Reis, M.A.M., Controlled production of exopolysaccharides from Enterobacter A47 as a function of carbon source with demonstration of their film and emulsifying abilities. Appl. Biochem. Biotechnol. 172 (2014), 641–657, 10.1007/s12010-013-0560-0.
Cruz, M.V., Araújo, D., Alves, V., Freitas, F., Reis, M.A.M., Characterization of medium-chain-length polyhydroxyalkanoates produced from olive oil deodorizer distillate. Int. J. Biol. Macromol. 82 (2016), 243–248, 10.1016/j.ijbiomac.2015.10.043.
Ahvenainen, P., Kontro, I., Svedström, K., Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23 (2016), 1073–1086, 10.1007/s10570-016-0881-6.
Rotaru, R., Savin, M., Tudorachi, N., Peptu, C., Samoila, P., Sacarescu, L., Harabagiu, V., Ferromagnetic iron oxide-cellulose nanocomposites prepared by ultrasonication. Polym. Chem. 9 (2018), 860–868.
Wu, J., Gao, H., Zhao, L., Liao, X., Chen, F., Wang, Z., Hu, X., Chemical compositional characterization of some apple cultivars. Food Chem. 103 (2007), 88–93, 10.1016/j.foodchem.2006.07.030.
Bustamante, D., Tortajada, M., Ramon, D., Rojas, A., Camelina oil as a promising substrate for mcl-PHA production in Pseudomonas sp. cultures. Appl. Food Biotechnol. 6:1 (2019), 61–70, 10.22037/afb.v6i1.21635.
Muhr, A., Rechberger, E.M., Salerno, A., Reiterer, A., Schiller, M., Kwiecién, M., Adamus, G., Kowalczuk, M., Strohmeier, K., Schober, S., Mittelbach, M., Koller, M., Biodegradable latexes from animal-derived waste: biosynthesis and characterization of mcl-PHA accumulated by Ps. citronellolis. React. Funct. Polym. 73:10 (2013), 1391–1398, 10.1016/j.reactfunctpolym.2012.12.009.
Sharma, P.K., Munir, R.I., de Kievit, T., Levin, D.B., Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Can. J. Microbiol. 63:12 (2017), 1009–1024, 10.1139/cjm-2017-0412.
Ma, L., Zhang, H., Liu, Q., Chen, J., Zhang, J., Chen, G.-Q., Production of two monomer structures containing medium-chain-length polyhydroxyalkanoates by b-oxidation-impaired mutant of Pseudomonas putida KT2442. Bioresour. Technol. 100 (2009), 4891–4894, 10.1016/j.biortech.2009.05.017.
Schönhals, A., Kremer, F., Amorphous polymers. Matyjaszewski, K., Möller, M., (eds.) Polymer Science: A Comprehensive Reference, 2012, Elsevier, Amsterdam, 201–226.
Wang, Y.-W., Yang, F., Wu, Q., Cheng, Y.-C., Yu, P.H.F., Chen, J., Chen, G.-Q., Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 26 (2005), 755–761, 10.1016/j.biomaterials.2004.03.023.
Fabra, M.J., Lopez-Rubio, A., Lagaron, J.M., Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. J. Food Eng. 127 (2014), 1–9, 10.1016/j.jfoodeng.2013.11.022.
Luo, R., Chen, J., Zhang, L., Chen, G., Polyhydroxyalkanoate copolyesters produced by Ralstonia eutropha PHB−4 harboring a low-substrate-specificity PHA synthase PhaC2Ps from Pseudomonas stutzeri 1317. Biochem. Eng. J. 32 (2006), 218–225, 10.1016/j.bej.2006.10.005.
Abdelwahab, M.A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., Chiellini, E., Thermal, mechanical and morphological characterization of plasticized PLAePHB blends. Polym. Degrad. Stab. 97 (2012), 1822–1828, 10.1016/j.polymdegradstab. 2012.05.036.