Carvalho, S.; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States, Neurotherapeutics and Experimental Psychopatology Group, Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
French, M.; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
Thibaut, Aurore ; Université de Liège - ULiège > Consciousness-Coma Science Group
Lima, W.; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
Simis, M.; Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
Leite, J.; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States, Neurotherapeutics and Experimental Psychopatology Group, Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal, Univ Portucalense, Portucalense Institute for Human Development – INPP, Oporto, Portugal
Fregni, F.; Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
Language :
English
Title :
Median nerve stimulation induced motor learning in healthy adults: A study of timing of stimulation and type of learning
Adeyemo, B. O., Simis, M., Macea, D. D., & Fregni, F. (2012). Systematic review of parameters of stimulation, clinical trial design characteristics, and motor outcomes in non-invasive brain stimulation in stroke. Frontiers in Psychiatry, 12(3), 88
Ambrus, G. G., Zimmer, M., Kincses, Z. T., Harza, I., Kovács, G., Paulus, W., & Antal, A. (2011). The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia, 49, 1974–1980. https://doi.org/10.1016/j.neuropsychologia.2011.03.026
Andrews, R. K., Schabrun, S. M., Ridding, M. C., Galea, M. P., Hodges, P. W., & Chipchase, L. S. (2013). The effect of electrical stimulation on corticospinal excitability is dependent on application duration: a same subject pre-post test design. Journal of Neuroengineering and Rehabilitation, 10(10), 51. https://doi.org/10.1186/1743-0003-10-51
Antal, A., & Herrmann, C. S. (2016). Transcranial alternating current and random noise stimulation: Possible mechanisms. Neural Plasticity, 2016, 3616807
Arce-McShane, F. I., Ross, C. F., Takahashi, K., Sessle, B. J., & Hatsopoulos, N. G. (2016). Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies. Proceedings of the National Academy of Sciences of the United States of America, 113, 5083–5088. https://doi.org/10.1073/pnas.1600788113
Barakat, M., Doyon, J., Debas, K., Vandewalle, G., Morin, A., Poirier, G., … Carrier, J. (2011). Fast and slow spindle involvement in the consolidation of a new motor sequence. Behavioral Brain Research, 217, 117–121. https://doi.org/10.1016/j.bbr.2010.10.019
Blethyn, K. L., Hughes, S. W., & Crunelli, V. (2008). Evidence for electrical synapses between neurons of the nucleus reticularis thalami in the adult brain in vitro. Thalamus & Related Systems, 4, 13–20
Boggio, P. S., Amancio, E. J., Correa, C. F., Cecilio, S., Valasek, C., Bajwa, Z., … Fregni, F. (2009). Transcranial DC stimulation coupled with TENS for the treatment of chronic pain. Clinical Journal of Pain, 25, 691–695. https://doi.org/10.1097/AJP.0b013e3181af1414
Cabral, M. E., Baltar, A., Borba, R., Galvão, S., Santos, L., Fregni, F., & Monte-Silva, K. (2015). Transcranial direct current stimulation: Before, during, or after motor training? NeuroReport, 26, 618–622. https://doi.org/10.1097/WNR.0000000000000397
Cappelletti, M., Pikkat, H., Upstill, E., Speekenbrink, M., & Walsh, V. (2015). Learning to integrate versus inhibiting information is modulated by age. Journal of Neuroscience, 35, 2213–2225. https://doi.org/10.1523/JNEUROSCI.1018-14.2015
Castillo-Saavedra, L., Gebodh, N., Bikson, M., Diaz-Cruz, C., Brandao, R., Coutinho, L., … Fregni, F. (2016). Clinically effective treatment of fibromyalgia pain with high-definition transcranial direct current stimulation: Phase II open-label dose optimization. Journal of Pain, 17, 14–26. https://doi.org/10.1016/j.jpain.2015.09.009
Celnik, P., Hummel, F., Harris-Love, M., Wolk, R., & Cohen, L. G. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation, 88, 1369–1376. https://doi.org/10.1016/j.apmr.2007.08.001
Chafee, M. V., & Ashe, J. (2007). Intelligence in action. Nature Neuroscience, 10, 142–143. https://doi.org/10.1038/nn0207-142
Chen, C.-F., Bikson, M., Chou, L.-W., Shan, C., Khadka, N., Chen, W.-S., & Fregni, F. (2017). Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation. Scientific Reports, 7, 43619. https://doi.org/10.1038/srep43619
Chen, C. F., Lin, Y. T., Chen, W. S., & Fregni, F. (2016). Contribution of corticospinal modulation and total electrical energy for peripheral-nerve-stimulation-induced neuroplasticity as indexed by additional muscular force. Brain Stimulation, 9, 133–140. https://doi.org/10.1016/j.brs.2015.09.012
Classen, J., Steinfelder, B., Liepert, J., Stefan, K., Celnik, P., Cohen, L. G., … Hallett, M. (2000) Cutaneomotor integration in humans is somatotopically organized at various levels of the nervous system and is task dependent. Experimental Brain Research, 130, 48–59. https://doi.org/10.1007/s002210050005
Conforto, A. B., Cohen, L. G., Dos Santos, R. L., Scaff, M., & Marie, S. K. N. (2007). Effects of somatosensory stimulation on motor function in chronic cortico-subcortical strokes. Journal of Neurology, 254, 333–339. https://doi.org/10.1007/s00415-006-0364-z
Conforto, A. B., Ferreiro, K. N., Tomasi, C., dos Santos, R. L., Moreira, V. L., Marie, S. K. N., … Cohen, L. G. (2010). Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabilitation and Neural Repair, 24, 263–272. https://doi.org/10.1177/1545968309349946
Conforto, A. B., Kaelin-Lang, A., & Cohen, L. G. (2002). Increase in hand muscle strength of stroke patients after somatosensory stimulation. Annals of Neurology, 51, 122–125. https://doi.org/10.1002/(ISSN)1531-8249
Cooper, E. B., Scherder, E. J., & Cooper, J. B. (2005). Electrical treatment of reduced consciousness: Experience with coma and Alzheimer's disease. Neuropsychological Rehabilitation, 15, 389–405. https://doi.org/10.1080/09602010443000317
Drover, J. D., Schiff, N. D., & Victor, J. D. (2010). Dynamics of coupled thalamocortical modules. Journal of Computational Neuroscience, 28, 605–616. https://doi.org/10.1007/s10827-010-0244-5
Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26, 471–479. https://doi.org/10.1016/j.neuroimage.2005.02.004
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340–347. https://doi.org/10.1162/089892902317361886
Ferretti, A., Babiloni, C., Arienzo, D., Del Gratta, C., Rossini, P. M., Tartaro, A., & Romani, G. L. (2007). Cortical brain responses during passive nonpainful median nerve stimulation at low frequencies (0.5–4 Hz): An fMRI study. Human Brain Mapping, 28, 645–653. https://doi.org/10.1002/(ISSN)1097-0193
Fertonani, A., Pirulli, C., & Miniussi, C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. Journal of Neuroscience, 31, 15416–15423. https://doi.org/10.1523/JNEUROSCI.2002-11.2011
Fleming, M. K., Sorinola, I. O., Roberts-Lewis, S. F., Wolfe, C. D., Wellwood, I., & Newham, D. J. (2015). The effect of combined somatosensory stimulation and task-specific training on upper limb function in chronic stroke: A double-blind randomized controlled trial. Neurorehabilitation and Neural Repair, 29, 143–152. https://doi.org/10.1177/1545968314533613
Focke, J., Kemmet, S., Krause, V., Keitel, A., & Pollok, B. (2017). Cathodal transcranial direct current stimulation (tDCS) applied to the left premotor cortex (PMC) stabilizes a newly learned motor sequence. Behavioral Brain Research, 316, 87–93. https://doi.org/10.1016/j.bbr.2016.08.032
Fregni, F., & Pascual-Leone, A. (2007). Technology Insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nature Clinical Practice. Neurology., 3, 383–393. https://doi.org/10.1038/ncpneuro0530
Galea, J. M., Albert, N. B., Ditye, T., & Miall, R. C. (2010). Disruption of the dorsolateral prefrontal cortex facilitates the consolidation of procedural skills. Journal of Cognitive Neuroscience, 22, 1158–1164. https://doi.org/10.1162/jocn.2009.21259
Gobel, E. W., Parrish, T. B., & Reber, P. J. (2011). Neural correlates of skill acquisition: Decreased cortical activity during a serial interception sequence learning task. NeuroImage, 58, 1150–1157. https://doi.org/10.1016/j.neuroimage.2011.06.090
Golaszewski, S. M., Siedentopf, C. M., Koppelstaetter, F., Rhomberg, P., Guendisch, G. M., Schlager, A., … Mottaghy, F. M. (2004). Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology, 62, 2262–2269. https://doi.org/10.1212/WNL.62.12.2262
Grafton, S. T., Hazeltine, E., & Ivry, R. (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510. https://doi.org/10.1162/jocn.1995.7.4.497
van der Groen, O., & Wenderoth, N. (2016). Transcranial random noise stimulation of visual cortex: Stochastic resonance enhances central mechanisms of perception. Journal of Neuroscience, 36, 5289–5298. https://doi.org/10.1523/JNEUROSCI.4519-15.2016
Hazeltine, E., Grafton, S. T., & Ivry, R. (1997). Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain, 120, 123–140. https://doi.org/10.1093/brain/120.1.123
Hindriks, R., & van Putten, M. J. (2012). Thalamo-cortical mechanisms underlying changes in amplitude and frequency of human alpha oscillations. NeuroImage, 70C, 150–163
Hirano, M., Kubota, S., Koizume, Y., Tanaka, S., & Funase, K. (2016). Different effects of implicit and explicit motor sequence learning on latency of motor evoked potential evoked by transcranial magnetic stimulation on the primary motor cortex. Frontiers in Human Neuroscience, 10, 671
Hodzic, A. (2004). Improvement and decline in tactile discrimination behavior after cortical plasticity induced by passive tactile coactivation. Journal of Neuroscience, 24, 442–446. https://doi.org/10.1523/JNEUROSCI.3731-03.2004
Hotermans, C., Peigneux, P., Maertens de Noordhout, A., Moonen, G., & Maquet, P. (2006). Early boost and slow consolidation in motor skill learning. Learning & Memory, 13, 580–583. https://doi.org/10.1101/lm.239406
Ibanez, V., Deiber, M. P., Sadato, N., Toro, C., Grissom, J., Woods, R. P., … Hallett, M. (1995). Effects of stimulus rate on regional cerebral blood flow after median nerve stimulation. Brain, 118, 1339–1351. https://doi.org/10.1093/brain/118.5.1339
Kaelin-Lang, A., Luft, A., Sawaki, L., Burstein, A., Sohn, Y., & Cohen, L. (2002). Modulation of human corticomotor excitability by somatosensory input. Journal of Physiology, 540, 623–633. https://doi.org/10.1113/jphysiol.2001.012801
Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning–evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36, 2710–2715. https://doi.org/10.1111/j.1460-9568.2012.08175.x
Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110, 316–339. https://doi.org/10.1037/0033-295X.110.2.316
Klaiput, A., & Kitisomprayoonkul, W. (2008). Increased pinch strength in acute and subacute stroke patients after simultaneous median and Ulnar sensory stimulation. Neurorehabilitation and Neural Repair, 23, 351–356
Kobayashi, M., Ng, J., Théoret, H., & Pascual-Leone, A. (2003). Modulation of intracortical neuronal circuits in human hand motor area by digit stimulation. Experimental Brain Research, 149, 1–8. https://doi.org/10.1007/s00221-002-1329-9
Koesler, I. B. M., Dafotakis, M., Ameli, M., Fink, G. R., & Nowak, D. A. (2008). Electrical somatosensory stimulation modulates hand motor function in healthy humans. Journal of Neurology, 255, 1567–1573. https://doi.org/10.1007/s00415-008-0990-8
Kwon, T. G., Park, E., Kang, C., Chang, W. H., & Kim, Y. H. (2016). The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke. Restorative Neurology and Neuroscience, 34, 915–923. https://doi.org/10.3233/RNN-160654
Lai, M.-I., Pan, L.-L., Tsai, M.-W., Shih, Y.-F., Wei, S.-H., & Chou, L.-W. (2016). Investigating the effects of peripheral electrical stimulation on corticomuscular functional connectivity stroke survivors. Topics in Stroke Rehabilitation, 23, 154–162. https://doi.org/10.1080/10749357.2015.1122264
Lee, Y., Lin, K., Wu, C., Liao, C., Lin, J., & Chen, C. (2015). Combining afferent stimulation and mirror therapy for improving muscular, sensorimotor, and daily functions after chronic stroke. American Journal of Physical Medicine & Rehabilitation, 94, 859–868. https://doi.org/10.1097/PHM.0000000000000271
Lin, K.-C., Chen, Y.-T., Huang, P.-C., Wu, C.-Y., Huang, W.-L., Yang, H.-W., … Lu, H.-J. (2014). Effect of mirror therapy combined with somatosensory stimulation on motor recovery and daily function in stroke patients: A pilot study. Journal of the Formosan Medical Association, 113, 422–428. https://doi.org/10.1016/j.jfma.2012.08.008
Luft, A. R., & Buitrago, M. M. (2005). Stages of motor skill learning. Molecular Neurobiology, 32, 205–216. https://doi.org/10.1385/MN:32:3:205
Manita, S., Suzuki, T., Homma, C., Matsumoto, T., Odagawa, M., Yamada, K., … Murayama, M. (2015). A top-down cortical circuit for accurate sensory perception. Neuron, 86, 1304–1316. https://doi.org/10.1016/j.neuron.2015.05.006
McDonnell, M. N., Hillier, S. L., Miles, T. S., Thompson, P. D., & Ridding, M. C. (2007). Influence of combined afferent stimulation and task-specific training following stroke: A pilot randomized controlled trial. Neurorehabilitation and Neural Repair, 21, 435–443. https://doi.org/10.1177/1545968307300437
Mezzacappa, E. (2004). Alerting, orienting, and executive attention: Developmental properties and sociodemographic correlates in an epidemiological sample of young, urban children. Child Development, 75, 1373–1386. https://doi.org/10.1111/j.1467-8624.2004.00746.x
Morales-Quezada, L., Castillo-Saavedra, L., Cosmo, C., Doruk, D., Sharaf, I., Malavera, A., & Fregni, F. (2015). Optimal random frequency range in transcranial pulsed current stimulation indexed by quantitative electroencephalography. NeuroReport, 26, 747–752. https://doi.org/10.1097/WNR.0000000000000415
Morales-Quezada, L., Saavedra, L. C., Rozisky, J., Hadlington, L., & Fregni, F. (2014). Intensity-dependent effects of transcranial pulsed current stimulation on interhemispheric connectivity: A high-resolution qEEG, sham-controlled study. NeuroReport, 25, 1054–1058. https://doi.org/10.1097/WNR.0000000000000228
Nitsche, M. A., Jakoubkova, M., Thirugnanasambandam, N., Schmalfuss, L., Hullemann, S., Sonka, K., … Happe, S. (2010). Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. Journal of Neurophysiology, 104, 2603–2614. https://doi.org/10.1152/jn.00611.2010
Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15, 619–626. https://doi.org/10.1162/089892903321662994
Pascual-Leone, A., Grafman, J., & Hallett, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263, 1287–1289. https://doi.org/10.1126/science.8122113
Reber, P. J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026–2042. https://doi.org/10.1016/j.neuropsychologia.2013.06.019
Reis, J., Robertson, E. M., Krakauer, J. W., Rothwell, J., Marshall, L., Gerloff, C., … Cohen, L. G. (2008). Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation? Brain Stimulation, 1, 363–369. https://doi.org/10.1016/j.brs.2008.08.001
Ridding, M. C., McKay, D. R., Thompson, P. D., & Miles, T. S. (2001). Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clinical Neurophysiology, 112, 1461–1469. https://doi.org/10.1016/S1388-2457(01)00592-2
Robertson, E. M. (2007). The serial reaction time task: Implicit motor skill learning? Journal of Neuroscience, 27, 10073–10075. https://doi.org/10.1523/JNEUROSCI.2747-07.2007
Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 1029–1040. https://doi.org/10.1016/j.neuropsychologia.2003.12.012
Saimpont, A., Mercier, C., Malouin, F., Guillot, A., Collet, C., Doyon, J., & Jackson, P. L. (2016). Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task. European Journal of Neuroscience, 43, 113–119. https://doi.org/10.1111/ejn.13122
Saiote, C., Polanía, R., Rosenberger, K., Paulus, W., & Antal, A. (2013). High-frequency TRNS reduces BOLD activity during visuomotor learning. PLoS ONE, 8, e59669. https://doi.org/10.1371/journal.pone.0059669
Samaei, A., Ehsani, F., Zoghi, M., Hafez Yosephi, M., & Jaberzadeh, S. (2017). Online and offline effects of cerebellar transcranial direct current stimulation on motor learning in healthy older adults: A randomized double-blind sham-controlled study. European Journal of Neuroscience, 45, 1177–1185. https://doi.org/10.1111/ejn.13559
Schabrun, S. M., Ridding, M. C., Galea, M. P., Hodges, P. W., & Chipchase, L. S. (2012). Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS ONE, 7, e51298. https://doi.org/10.1371/journal.pone.0051298
Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025. https://doi.org/10.1016/S0896-6273(03)00123-5
Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., & Rossini, P. M. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. Journal of Neurophysiology, 104, 1134–1140. https://doi.org/10.1152/jn.00661.2009
Terney, D., Chaieb, L., Moliadze, V., Antal, A., & Paulus, W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. Journal of Neuroscience, 28, 14147–14155. https://doi.org/10.1523/JNEUROSCI.4248-08.2008
Thibaut, A., Russo, C., Morales-Quezada, L., Hurtado-Puerto, A., Deitos, A., Freedman, S., … Fregni, F. (2017). Neural signature of tDCS, tPCS and their combination: Comparing the effects on neural plasticity. Neuroscience Letters, 637, 207–214. https://doi.org/10.1016/j.neulet.2016.10.026
Tunovic, S., Press, D. Z., & Robertson, E. M. (2014). A physiological signal that prevents motor skill improvements during consolidation. Journal of Neuroscience, 34, 5302–5310. https://doi.org/10.1523/JNEUROSCI.3497-13.2014
Vasquez, A., Malavera, A., Doruk, D., Morales-Quezada, L., Carvalho, S., Leite, J., & Fregni, F. (2016). Duration dependent effects of transcranial pulsed current stimulation (tPCS) indexed by electroencephalography. Neuromodulation, 19, 679–688. https://doi.org/10.1111/ner.12457
Vasquez, A. C., Thibaut, A., Morales-Quezada, L., Leite, J., & Fregni, F. (2017). Patterns of brain oscillations across different electrode montages in transcranial pulsed current stimulation. NeuroReport, 28, 421–425. https://doi.org/10.1097/WNR.0000000000000772
Veldman, M. P., Maffiuletti, N. A., Hallett, M., Zijdewind, I., & Hortobágyi, T. (2014). Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neuroscience and Biobehavioral Reviews, 47, 22–35. https://doi.org/10.1016/j.neubiorev.2014.07.013
Veldman, M. P., Zijdewind, I., Maffiuletti, N. A., & Hortobágyi, T. (2016). Motor skill acquisition and retention after somatosensory electrical stimulation in healthy humans. Frontiers in Human Neuroscience, 10, 115
Volz, M. S., Suarez-Contreras, V., Mendonca, M. E., Pinheiro, F. S., Merabet, L. B., & Fregni, F. (2013). Effects of sensory behavioral tasks on pain threshold and cortical excitability. PLoS ONE, 8, e52968. https://doi.org/10.1371/journal.pone.0052968
Wagle Shukla, A., Shuster, J. J., Chung, J. W., Vaillancourt, D. E., Patten, C., Ostrem, J., & Okun, M. S. (2016). Repetitive transcranial magnetic stimulation (rTMS) therapy in Parkinson Disease: A meta-analysis. PM R, 8, 356–366. https://doi.org/10.1016/j.pmrj.2015.08.009
Wilkinson, L., & Shanks, D. R. (2004). Intentional control and implicit sequence learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30, 354–369. https://doi.org/10.1037/0278-7393.30.2.354
Williams, J., Imamura, M., & Fregni, F. (2009). Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. Journal of Rehabilitation Medicine, 41, 305–311. https://doi.org/10.2340/16501977-0356
Willingham, D. B., Salidis, J., & Gabrieli, J. D. E. (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Journal of Neurophysiology, 88, 1451–1460. https://doi.org/10.1152/jn.2002.88.3.1451
Wu, C. W., Seo, H. J., & Cohen, L. G. (2006). Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Archives of Physical Medicine and Rehabilitation, 87, 351–357. https://doi.org/10.1016/j.apmr.2005.11.019
Wu, C. W. H., Van Gelderen, P., Hanakawa, T., Yaseen, Z., & Cohen, L. G. (2005). Enduring representational plasticity after somatosensory stimulation. NeuroImage, 27, 872–884. https://doi.org/10.1016/j.neuroimage.2005.05.055
Yang, J., & Li, P. (2012) Brain networks of explicit and implicit learning. PLoS ONE, 7(8), e42993
Yozbatiran, N., Keser, Z., Davis, M., Stampas, A., O'Malley, M. K., Cooper-Hay, C., … Francisco, G. E. (2016). Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study. NeuroRehabilitation, 39, 401–411. https://doi.org/10.3233/NRE-161371
Zagha, E., Casale, A. E., Sachdev, R. N. S., McGinley, M. J., & McCormick, D. A. (2013). Motor cortex feedback influences sensory processing by modulating network state. Neuron, 79, 567–578. https://doi.org/10.1016/j.neuron.2013.06.008