Zhang, X.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
Zhao, X.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
Zhu, Y.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
Shi, H.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
Chen, J.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
Shi, D.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
Feng, L.; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
Language :
English
Title :
Characterization of two monoclonal antibodies that recognize linker region and carboxyl terminal domain of coronavirus nucleocapsid protein
de Groot RJ, Baker SG, Baric RS, Enjuanes L, Gorbalenya AE. Coronaviridae. In: King A, Adams M, Carstens E, Lefkowitz E, editors. Virus taxonomy: Ninth report of the International Committee on Taxonomy of Viruses. San Diego: Elsevier Academic Press; 2011. pp. 774-796.
Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog. 2012; 8: e1002859. doi: 10.1371/journal.ppat.1002859 PMID: 22876187
Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009; 7: 439-450. doi: 10.1038/nrmicro2147 PMID: 19430490
Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997; 48: 1-100. doi: 10.1016/s0065-3527(08)60286-9 PMID: 9233431
de Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005; 64: 165-230. doi: 10.1016/S0065-3527(05)64006-7 PMID: 16139595
Baric RS, Nelson GW, Fleming JO, Deans RJ, Keck JG, Casteel N, et al. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol. 1988; 62: 4280-4287. PMID: 2845140
Robbins SG, Frana MF, McGowan JJ, Boyle JF, Holmes KV. RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology. 1986; 150: 402-410. doi: 10.1016/0042-6822(86)90305-3 PMID: 3083580
Zuniga S, Sola I, Moreno JL, Sabella P, Plana-Duran J, Enjuanes L. Coronavirus nucleocapsid protein is an RNA chaperone. Virology. 2007; 357: 215-227. doi: 10.1016/j.virol.2006.07.046 PMID: 16979208
Zuniga S, Cruz JL, Sola I, Mateos-Gomez PA, Palacio L, Enjuanes L. Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. J Virol. 2010; 84: 2169-2175. doi: 10.1128/JVI.02011-09 PMID: 19955314
Masters PS. Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus. Arch Virol. 1992; 125: 141-160. doi: 10.1007/bf01309634 PMID: 1322650
Parker MM, Masters PS. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology. 1990; 179: 463-468. doi: 10.1016/0042-6822(90)90316-j PMID: 2171216
McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 2014; 6: 2991-3018. doi: 10.3390/v6082991 PMID: 25105276
Luo H, Ye F, Chen K, Shen X, Jiang H. SR-rich motif plays a pivotal role in recombinant SARS coronavirus nucleocapsid protein multimerization. Biochemistry. 2005; 44: 15351-15358. doi: 10.1021/ bi051122c PMID: 16285739
Yu IM, Gustafson CL, Diao J, Burgner JW 2nd, Li Z, Zhang J, et al. Recombinant severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein forms a dimer through its C-terminal domain. J Biol Chem. 2005; 280: 23280-23286. doi: 10.1074/jbc.M501015200 PMID: 15849181
Chang CK, Sue SC, Yu TH, Hsieh CM, Tsai CK, Chiang YC, et al. The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure. FEBS Lett. 2005; 579: 5663-5668. doi: 10.1016/j.febslet.2005.09.038 PMID: 16214138
Zhang X, Shi H, Chen J, Shi D, Li C, Feng L. EF1A interacting with nucleocapsid protein of transmissible gastroenteritis coronavirus and plays a role in virus replication. Vet Microbiol. 2014; 172: 443-448. doi: 10.1016/j.vetmic.2014.05.034 PMID: 24974120
Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975; 256: 495-497. doi: 10.1038/256495a0 PMID: 1172191
Jungmann A, Nieper H, Muller H. Apoptosis is induced by infectious bursal disease virus replication in productively infected cells as well as in antigen-negative cells in their vicinity. J Gen Virol. 2001; 82: 1107-1115. doi: 10.1099/0022-1317-82-5-1107 PMID: 11297685
Wang X, Qiu H, Zhang M, Cai X, Qu Y, Hu D, et al. Distribution of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in different stages of gestation sows: HP-PRRSV distribution in gestation sows. Vet Immunol Immunopathol. 2015; 166: 88-94. doi: 10.1016/j.vetimm. 2015.06.002 PMID: 26143005
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014; 42: W252-258. doi: 10.1093/nar/gku340 PMID: 24782522
Takeda M, Chang CK, Ikeya T, Guntert P, Chang YH, Hsu YL, et al. Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol. 2008; 380: 608-622. doi: 10.1016/j.jmb.2007.11.093 PMID: 18561946
Jenwitheesuk E, Samudrala R. Identifying inhibitors of the SARS coronavirus proteinase. Bioorg Med Chem Lett. 2003; 13: 3989-3992. doi: 10.1016/j.bmcl.2003.08.066 PMID: 14592491
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003; 300: 1763-1767. doi: 10.1126/science. 1085658 PMID: 12746549
Yount B, Curtis KM, Baric RS. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol. 2000; 74: 10600-10611. doi: 10.1128/jvi.74.22. 10600-10611.2000 PMID: 11044104
Li P, Ren X. Reverse transcription loop-mediated isothermal amplification for rapid detection of transmissible gastroenteritis virus. Curr Microbiol. 2011; 62: 1074-1080. doi: 10.1007/s00284-010-9825-9 PMID: 21127872
Chen Q, Li J, Fang XE, Xiong W. Detection of swine transmissible gastroenteritis coronavirus using loop-mediated isothermal amplification. Virol J. 2010; 7: 206. doi: 10.1186/1743-422X-7-206 PMID: 20799985
Rodak L, Smid B, Nevorankova Z, Valicek L, Smitalova R. Use of monoclonal antibodies in blocking ELISA detection of transmissible gastroenteritis virus in faeces of piglets. J Vet Med B Infect Dis Vet Public Health. 2005; 52: 105-111. doi: 10.1111/j.1439-0450.2005.00829.x PMID: 15876221
Eleouet JF, Slee EA, Saurini F, Castagne N, Poncet D, Garrido C, et al. The viral nucleocapsid protein of transmissible gastroenteritis coronavirus (TGEV) is cleaved by caspase-6 and -7 during TGEVinduced apoptosis. J Virol. 2000; 74: 3975-3983. doi: 10.1128/jvi.74.9.3975-3983.2000 PMID: 10756009
Anton IM, Sune C, Meloen RH, Borras-Cuesta F, Enjuanes L. A transmissible gastroenteritis coronavirus nucleoprotein epitope elicits T helper cells that collaborate in the in vitro antibody synthesis to the three major structural viral proteins. Virology. 1995; 212: 746-751. doi: 10.1006/viro.1995.1535 PMID: 7571447
Huang Q, Yu L, Petros AM, Gunasekera A, Liu Z, Xu N, et al. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry. 2004; 43: 6059-6063. doi: 10.1021/ bi036155b PMID: 15147189
Hurst KR, Koetzner CA, Masters PS. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein. J Virol. 2009; 83: 7221-7234. doi: 10.1128/JVI.00440-09 PMID: 19420077
Chang CK, Hsu YL, Chang YH, Chao FA, Wu MC, Huang YS, et al. Multiple nucleic acid binding sites and intrinsic disorder of severe acute respiratory syndrome coronavirus nucleocapsid protein: implications for ribonucleocapsid protein packaging. J Virol. 2009; 83: 2255-2264. doi: 10.1128/JVI.02001-08 PMID: 19052082
Peng TY, Lee KR, Tarn WY. Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization. FEBS J. 2008; 275: 4152-4163. doi: 10.1111/j.1742-4658.2008.06564.x PMID: 18631359
Surjit M, Kumar R, Mishra RN, Reddy MK, Chow VT, Lal SK. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J Virol. 2005; 79: 11476-11486. doi: 10.1128/JVI.79.17.11476-11486.2005 PMID: 16103198
Wu CH, Yeh SH, Tsay YG, Shieh YH, Kao CL, Chen YS, et al. Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. J Biol Chem. 2009; 284: 5229-5239. doi: 10.1074/jbc.M805747200 PMID: 19106108
Luo H, Chen Q, Chen J, Chen K, Shen X, Jiang H. The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein A1. FEBS Lett. 2005; 579: 2623-2628. doi: 10.1016/j.febslet.2005.03.080 PMID: 15862300
He R, Dobie F, Ballantine M, Leeson A, Li Y, Bastien N, et al. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun. 2004; 316: 476-483. doi: 10.1016/ j.bbrc.2004.02.074 PMID: 15020242
Chang CK, Sue SC, Yu TH, Hsieh CM, Tsai CK, Chiang YC, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci. 2006; 13: 59-72. doi: 10.1007/s11373-005-9035-9 PMID: 16228284
Chen CY, Chang CK, Chang YW, Sue SC, Bai HI, Riang L, et al. Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J Mol Biol. 2007; 368: 1075-1086. doi: 10.1016/j.jmb.2007.02.069 PMID: 17379242
Lo YS, Lin SY, Wang SM, Wang CT, Chiu YL, Huang TH, et al. Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein. FEBS Lett. 2013; 587: 120-127. doi: 10. 1016/j.febslet.2012.11.016 PMID: 23178926
Kuo SM, Kao HW, Hou MH, Wang CH, Lin SH, Su HL. Evolution of infectious bronchitis virus in Taiwan: positively selected sites in the nucleocapsid protein and their effects on RNA-binding activity. Vet Microbiol. 2013; 162: 408-418. doi: 10.1016/j.vetmic.2012.10.020 PMID: 23159091
Fan H, Ooi A, Tan YW, Wang S, Fang S, Liu DX, et al. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure. 2005; 13: 1859-1868. doi: 10.1016/j.str.2005.08.021 PMID: 16338414
Jayaram H, Fan H, Bowman BR, Ooi A, Jayaram J, Collisson EW, et al. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: implications for nucleocapsid formation. J Virol. 2006; 80: 6612-6620. doi: 10.1128/JVI.00157-06 PMID: 16775348
Spencer KA, Hiscox JA. Characterisation of the RNA binding properties of the coronavirus infectious bronchitis virus nucleocapsid protein amino-terminal region. FEBS Lett. 2006; 580: 5993-5998. doi: 10.1016/j.febslet.2006.09.052 PMID: 17052713
Saikatendu KS, Joseph JS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, et al. Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol. 2007; 81: 3913-3921. doi: 10.1128/JVI.02236-06 PMID: 17229691
Yu IM, Oldham ML, Zhang J, Chen J. Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae. J Biol Chem. 2006; 281: 17134-17139. doi: 10.1074/jbc.M602107200 PMID: 16627473
Hiscox JA, Wurm T, Wilson L, Britton P, Cavanagh D, Brooks G. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol. 2001; 75: 506-512. doi: 10.1128/JVI.75.1.506-512.2001 PMID: 11119619
Wurm T, Chen H, Hodgson T, Britton P, Brooks G, Hiscox JA. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol. 2001; 75: 9345-9356. doi: 10.1128/JVI.75.19.9345-9356.2001 PMID: 11533198
Sheval EV, Polzikov MA, Olson MO, Zatsepina OV. A higher concentration of an antigen within the nucleolus may prevent its proper recognition by specific antibodies. Eur J Histochem. 2005; 49: 117-123. PMID: 15967739
You J, Dove BK, Enjuanes L, DeDiego ML, Alvarez E, Howell G, et al. Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. J Gen Virol. 2005; 86: 3303-3310. doi: 10.1099/vir.0.81076-0 PMID: 16298975
Stewart M, Clarkson WD. Nuclear pores and macromolecular assemblies involved in nucleocytoplasmic transport. Curr Opin Struct Biol. 1996; 6: 162-165. doi: 10.1016/s0959-440x(96)80070-4 PMID: 8728648
Nigg EA, Baeuerle PA, Luhrmann R. Nuclear import-export: in search of signals and mechanisms. Cell. 1991; 66: 15-22. doi: 10.1016/0092-8674(91)90135-l PMID: 1712670
Wong RW. Nuclear pore complex: from structural view to chemical tools. Chem Biol. 2015; 22: 1285-1287. doi: 10.1016/j.chembiol.2015.10.001 PMID: 26496682