human remains detection dogs; dog behavior; dog selection; dog training; forensic science
Résumé :
[en] Human remains detection dogs (HRDDs) are powerful police assets to locate a corpse.
However, the methods used to select and train them are as diverse as the number of countries with
such a canine brigade. First, a survey sent to human remains searching brigades (Ncountries = 10;
NBrigades = 16; NHandlers = 50; Nquestions = 9), to collect their working habits confirmed the lack of
optimized selection and training procedures. Second, a literature review was performed in order
to outline the strengths and shortcomings of HRDDs training. A comparison between the scientific
knowledge and the common practices used by HRDDs brigade was then conducted focusing on
HRDDs selection and training procedures. We highlighted that HRDD handlers select their dogs by
focusing on behavioral traits while neglecting anatomical features, which have been shown to be
important. Most HRDD handlers reported to use a reward-based training, which is in accordance
with training literature for dogs. Training aids should be representative of the odor target to allow a
dog to reach optimal performances. The survey highlighted the wide diversity of homemade training
aids, and the need to optimize their composition. In the present document, key research topics to
improve HRDD works are also provided.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Martin, Clément ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Diederich, Claire; Unamur > Namur Research Institute for life sciences
Verheggen, François ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Langue du document :
Anglais
Titre :
Cadaver Dogs and the Deathly Hallows - A survey and literature review on selection and training procedure
Titre traduit :
[fr] Les chiens de recherche de restes humains et les reliques de la mort - enquête et revue de la littérature sur les procédures de sélection et d'entrainement
Rebmann, A.; David, E.; Sorg, M. Cadaver Dog Handbook; Press, C., Ed.; CRC Press: New York, NY, USA, 2000; ISBN 0849318866.
Komar, D. The Use of Cadaver Dogs in Locating Scattered, Scavenged Human Remains: Preliminary Field Test Results. J. Forensic Sci. 1999, 44, 405–408, doi:10.1520/JFS14474J.
Migala, A.F.; Brown, S.E. Use of human remains detection dogs for wide area search after wildfire: A new experience for texas task force 1 search and rescue resources. Wilderness Environ. Med. 2012, 23, 337–342, doi:10.1016/j.wem.2012.05.005.
Nizio, K.D.; Ueland, M.; Stuart, B.H.; Forbes, S.L. The analysis of textiles associated with decomposing remains as a natural training aid for cadaver‐detection dogs. Forensic Chem. 2017, 5, 33–45, doi:10.1016/j.forc.2017.06.002.
Oesterhelweg, L.; Kröber, S.; Rottmann, K.; Willhöft, J.; Braun, C.; Thies, N.; Püschel, K.; Silkenath, J.; Gehl, A. Cadaver dogs‐A study on detection of contaminated carpet squares. Forensic Sci. Int. 2008, 174, 35–39, doi:10.1016/j.forsciint.2007.02.031.
Riezzo, I.; Neri, M.; Rendine, M.; Bellifemina, A.; Cantatore, S.; Fiore, C.; Turillazzi, E. Cadaver dogs: Unscientific myth or reliable biological devices? Forensic Sci. Int. 2014, 244, 213–221, doi:10.1016/j.forsciint.2014.08.026.
Rust, L.T.; Nizio, K.D.; Wand, M.P.; Forbes, S.L. Investigating the detection limits of scent‐detection dogs to residual blood odour on clothing. Forensic Chem. 2018, 9, 62–75, doi:10.1016/j.forc.2018.05.002.
Van Denhouwe, B.; Schotsmans, E.M.J. DVI Belgium: Victim Identification and Necrosearch. Forensic Archaeol. A Glob. Perspect. 2014, 9–17, doi:10.1002/9781118745977.ch2.
Quignon, P.; Rimbault, M.; Robin, S.; Galibert, F. Genetics of canine olfaction and receptor diversity. Mamm genome 2012, 23, 132–143, doi:10.1007/s00335‐011‐9371‐1.
Frederickx, C.; Verheggen, F.J.; Haubruge, E. Biosensors in forensic sciences. Biotechnol. Agron. Soc. Environ. 2011, 15, 449–458.
Hall, N.J.; Smith, D.W.; Wynne, C.D.L. Training domestic dogs ( Canis lupus familiaris ) on a novel discrete trials odor‐detection task. Learn. Motiv. 2013, 44, 218–228, doi:10.1016/j.lmot.2013.02.004.
Harper, R.J.; Furton, K.G. Biological detection of explosives. In Counterterrorist Detection Techniques of Explosives; Elsevier Science B.V., Amsterdam, The Netherlands, 2007; pp. 395–431 ISBN 9780444522047.
Rendine, M.; Fiore, C.; Bertozzi, G.; De Carlo, D.; Filetti, V.; Fortarezza, P.; Riezzo, I. Decomposing Human Blood: Canine Detection Odor Signature and Volatile Organic Compounds. J. Forensic Sci. 2018, 1–6, doi:10.1111/1556‐4029.13901.
Sacharczuk, M.; Walczak, M.; Adamkiewicz, E.; Walasek, A.; Ensminger, J.; Presch, M.; Jezierski, T. Polymorphism of olfactory and neurotransmitters receptor genes in drug and explosives detection dogs can be associated with differences in detection performance. Appl. Anim. Behav. Sci. 2019, 215, 52–60, doi:10.1016/j.applanim.2019.04.006.
Chen, R.; Irwin, D.M.; Zhang, Y.P. Differences in selection drive olfactory receptor genes in different directions in dogs and wolf. Mol. Biol. Evol. 2012, 29, 3475–3484, doi:10.1093/molbev/mss153.
Lesniak, A.; Walczak, M.; Jezierski, T.; Sacharczuk, M.; Gawkowski, M.; Jaszczak, K. Canine olfactory receptor gene polymorphism and its relation to odor detection performance by sniffer dogs. J. Hered. 2008, 99, 518–527, doi:10.1093/jhered/esn057.
Mombaerts, P.; Wang, F.; Dulac, C.; Chao, S.K.; Nemes, A.; Mendelsohn, M.; Edmondson, J.; Axel, R. Visualizing an Olfactory Sensory Map. Cell 1965, 18, 385–387.
Quignon, P.; Giraud, M.; Rimbault, M.; Lavigne, P.; Tacher, S.; Morin, E.; Retout, E.; Valin, A.S.; Lindblad‐ Toh, K.; Nicolas, J.; et al. The dog and rat olfactory receptor repertoires. Genome Biol. 2005, 6, doi:10.1186/gb‐ 2005‐6‐10‐r83.
Beebe, S.C.; Howell, T.J.; Bennett, P.C. Using Scent Detection Dogs in Conservation Settings: A Review of Scientific Literature Regarding Their Selection. Front. Vet. Sci. 2016, 3, 1–13, doi:10.3389/fvets.2016.00096.
Polgár, Z.; Kinnunen, M.; Ujváry, D.; Miklósi, A.; Gácsi, M.; Újváry, D.; Miklósi, Á.; Gácsi, M. A test of canine olfactory capacity: Comparing various dog breeds and wolves in a natural detection task. PLoS One 2016, 11, 1–14, doi:10.1371/journal.pone.0154087.
Tomkins, L.M.; Thomson, P.C.; McGreevy, P.D. Behavioral and physiological predictors of guide dog success. J. Vet. Behav. Clin. Appl. Res. 2011, 6, 178–187, doi:10.1016/j.jveb.2010.12.002.
Wilsson, E.; Sundgren, P.E. The use of a behaviour test for the selection of dogs for service and breeding, I: Method of testing and evaluating test results in the adult dog, demands on different kinds of service dogs, sex and breed differences. Appl. Anim. Behav. Sci. 1997, 53, 279–295, doi:10.1016/S0168‐1591(96)01174‐4.
Coppinger, R.; Coppinger, L.; Skillings, E. Observation on assistance dog training and use. J. Appl. Anim. Welf. Sci. 1998, 1, 133–144.
Feng, L.C.; Howell, T.J.; Bennett, P.C. How clicker training works: Comparing Reinforcing, Marking, and Bridging Hypotheses. Appl. Anim. Behav. Sci. 2016, 181, 34–40, doi:10.1016/j.applanim.2016.05.012.
Ziv, G. The effects of using aversive training methods in dogs—A review. J. Vet. Behav. Clin. Appl. Res. 2017, 19, 50–60, doi:10.1016/j.jveb.2017.02.004.
Harper, R.J.; Almirall, J.R.; Furton, K.G. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection. Talanta 2005, 67, 313–327, doi:10.1016/j.talanta.2005.05.019.
Stadler, S.; Stefanuto, P.‐H.; Byer, J.D.; Brokl, M.; Forbes, S.L.; Focant, J.‐F. Analysis of synthetic canine training aids by comprehensive two‐dimensional gas chromatography‐time of flight mass spectrometry. J. Chromatogr. A 2012, 1255, 202–206, doi:10.1016/j.chroma.2012.04.001.
Dekeirsschieter, J.; Stefanuto, P.‐H.; Brasseur, C.; Haubruge, E.; Focant, J.‐F. Enhanced characterization of the smell of death by comprehensive two‐dimensional gas chromatography‐time‐of‐flight mass spectrometry (GCxGC‐TOFMS). PLoS One 2012, 7, doi:10.1371/journal.pone.0039005.
Martin, C.; Verheggen, F. Odour profile of human corpses: A review. Forensic Chem. 2018, 10, 27–36, doi:10.1016/j.forc.2018.07.002.
Perrault, K.A.; Nizio, K.D.; Forbes, S.L. A Comparison of One‐Dimensional and Comprehensive Two‐ Dimensional Gas Chromatography for Decomposition Odour Profiling Using Inter‐Year Replicate Field Trials. Chromatographia 2015, 78, 1057–1070, doi:10.1007/s10337‐015‐2916‐9.
Stefanuto, P.‐H.; Perrault, K.A.; Stadler, S.; Pesesse, R.; Leblanc, H.N.; Forbes, S.L.; Focant, J.‐F. GC × GC‐ TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures. Anal. Bioanal. Chem. 2015, 407, 4767–4778, doi:10.1007/s00216‐015‐8683‐5.
Agapiou, A.; Zorba, E.; Mikedi, K.; McGregor, L.; Spiliopoulou, C.; Statheropoulos, M. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption‐comprehensive two‐dimensional gas chromatography‐time of flight mass spectrometry. Anal. Chim. Acta 2015, 883, 99–108, doi:10.1016/j.aca.2015.04.024.
Dekeirsschieter, J.; Verheggen, F.J.; Gohy, M.; Hubrecht, F.; Bourguignon, L.; Lognay, G.; Haubruge, E. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes. Forensic Sci. Int. 2009, 189, 46–53, doi:10.1016/j.forsciint.2009.03.034.
Janaway, R.C.; Percival, S.L.; Wilson, A.S. Decomposition of human remains. In Microbiology and Aging; Humana Press: New York, NY, USA, 2009; pp. 275–289 ISBN 978‐1‐58829‐640‐5.
Rosier, E.; Loix, S.; Develter, W.; Van de Voorde, W.; Tytgat, J.; Cuypers, E. Time‐dependent VOC‐profile of decomposed human and animal remains in laboratory environment. Forensic Sci. Int. 2016, 266, 164–169, doi:10.1016/j.forsciint.2016.05.035.
Cernosek, T.; Eckert, K.E.; Carter, D.O.; Perrault, K.A. Volatile Organic Compound Profiling from Postmortem Microbes using Gas Chromatography–Mass Spectrometry. J. Forensic Sci. 2019, doi:10.1111/1556‐4029.14173.
Finley, S.J.; Benbow, M.E.; Javan, G.T. Microbial communities associated with human decomposition and their potential use as postmortem clocks. Int. J. Legal Med. 2015, 129, 623–632, doi:10.1007/s00414‐014‐1059‐ 0.
Martin, C.; Vanderplanck, M.; Boullis, A.; Haubruge, E.; Verheggen, F. Impact of necrophagous insects on the emission of volatile organic compounds released during the decaying process. Entomol. Gen. 2019, 39, 19–31, doi:10.1127/entomologia/2019/0663.
Statheropoulos, M.; Agapiou, A.; Zorba, E.; Mikedi, K.; Karma, S.; Pallis, G.C.; Eliopoulos, C.; Spiliopoulou, C. Combined chemical and optical methods for monitoring the early decay stages of surrogate human models. Forensic Sci. Int. 2011, 210, 154–163, doi:10.1016/j.forsciint.2011.02.023.
Martin, C.; Verheggen, F. Behavioural response of Lucilia sericata to a decaying body infested by necrophagous insects. Physiol. Entomol. 2018, doi:10.1111/phen.12244.
Cobb, M.; Branson, N.; McGreevy, P.; Lill, A.; Bennett, P. The advent of canine performance science: Offering a sustainable future for working dogs. Behav. Processes 2015, 110, 96–104, doi:10.1016/j.beproc.2014.10.012.
Hayes, J.E.E.; McGreevy, P.D.D.; Forbes, S.L.L.; Laing, G.; Stuetz, R.M.M. Critical review of dog detection and the influences of physiology, training, and analytical methodologies. Talanta 2018, 185, 499–512, doi:10.1016/j.talanta.2018.04.010.
Jezierski, T.; Adamkiewicz, E.; Walczak, M.; Sobczyńska, M.; Górecka‐Bruzda, A.; Ensminger, J.; Papet, E. Efficacy of drug detection by fully‐trained police dogs varies by breed, training level, type of drug and search environment. Forensic Sci. Int. 2014, 237, 112–118, doi:10.1016/j.forsciint.2014.01.013.
Kerley, L.L.; Salkina, G.P. Using Scent‐Matching Dogs to Identify Individual Amur Tigers from Scats. J. Wildl. Manage. 2007, 71, 1349–1356, doi:10.2193/2006‐361.
Hussein, A.K.; Sullivan, M.; Penderis, J. Effect of brachycephalic, mesaticephalic, and dolichocephalic head conformations on olfactory bulb angle and orientation in dogs as determined by use of in vivo magnetic resonance imaging. Am. J. Vet. Res. 2012, 73, 946–951, doi:10.2460/ajvr.73.7.946.
Smith, D.A.; Ralls, K.; Hurt, A.; Adams, B.; Parker, M.; Davenport, B.; Smith, M.C.; Maldonado, J.E. Detection and accuracy rates of dogs trained to find scats of San Joaquin kit foxes (Vulpes macrotis mutica). Anim. Conserv. 2003, 6, 339–346, doi:10.1017/S136794300300341X.
Leigh, K.A.; Dominick, M. An assessment of the effects of habitat structure on the scat finding performance of a wildlife detection dog. Methods Ecol. Evol. 2015, 6, 745–752, doi:10.1111/2041‐210X.12374.
Sinn, D.L.; Gosling, S.D.; Hilliard, S. Personality and performance in military working dogs: Reliability and predictive validity of behavioral tests. Appl. Anim. Behav. Sci. 2010, 127, 51–65, doi:10.1016/j.applanim.2010.08.007.
Hurt, A.; Smith, D. Conservation dogs. In Canine ergonomics; Helton, W., Ed.; CRC Press, London, UK, 2009; pp. 175–194.
Chesney, C.J. The microclimate of the canine coat: the effects of heating on coat and skin temperature and relative humidity. Vet. Dermatol 1997, 8, 183–190.
Reed, S.E.; Bidlack, A.L.; Hurt, A.; Getz, W.M. Detection distance and environmental factors in conservation detection dog surveys. J. Wildl. Manage. 2011, 75, 243–251, doi:10.1002/jwmg.8.
Bulanda, S. Ready! Training the search and rescue dog; Book, K.C., Ed.; 2nd ed.; Companion House Books: Mount Joy, PA, USA 2010;
Rooney, N.J.; Bradshaw, J.W.S. Breed and sex differences in the behavioural attributes of specialist search dogs ‐ A questionnaire survey of trainers and handlers. Appl. Anim. Behav. Sci. 2004, 86, 123–135, doi:10.1016/j.applanim.2003.12.007.
Moore, G.E.; Burkman, K.D.; Carter, M.N.; Peterson, M.R. Causes of death or reasons for euthanasia in military working dogs: 927 cases (1993–1996). J. Am. Vet. Med. Assoc. 2001, 219, 209–214.
Brady, K.; Cracknell, N.; Zulch, H.; Mills, D.S. Factors associated with long‐term success in working police dogs. Appl. Anim. Behav. Sci. 2018, 207, 67–72, doi:10.1016/j.applanim.2018.07.003.
Thrailkill, E.A.; Porritt, F.; Kacelnik, A.; Bouton, M.E. Maintaining performance in searching dogs: Evidence from a rat model that training to detect a second (irrelevant) stimulus can maintain search and detection responding. Behav. Processes 2018, 157, 161–170, doi:10.1016/j.beproc.2018.09.012.
Tacher, S.; Quignon, P.; Rimbault, M.; Dreano, S.; Andre, C.; Galibert, F. Olfactory receptor sequence polymorphism within and between breeds of dogs. J. Hered. 2005, 96, 812–816, doi:10.1093/jhered/esi113.
Dahlgren, D.K.; Elmore, R.D.; Smith, D.A.; Hurt, A.; Arnett, E.B.; Connelly, J.W. Use of dogs in wildlife research and management. In The Wildlife Techniques Manual, 7th ed.; The John Hopkins University Press: Baltimore, MD, USA, 2011; pp. 140–153.
Craven, B.A.; Paterson, E.G.; Settles, G.S. The fluid dynamics of canine olfaction: Unique nasal airflow patterns as an explanation of macrosmia. J. R. Soc. Interface 2010, 7, 933–943, doi:10.1098/rsif.2009.0490.
Lazarowski, L.; Haney, P.S.; Brock, J.; Fisher, T.; Rogers, B.; Angle, C.; Katz, J.S.; Waggoner, L.P. investigation of the Behavioral characteristics of Dogs Purpose‐ Bred and Prepared to Perform Vapor Wake ® Detection of Person‐Borne explosives. Front. Vet. Sci. 2018, 20, doi:10.3389/fvets.2018.00050.
Jenkins, D.; Watson, A.; Miller, G. Population studies on red grouse, Lagopus lagopus scoticus (Lath.) in north‐east Scotland. J Anim Ecol 1963, 32, 317–376, doi:doi:10.2307/2598.
Bray, E.E.; Levy, K.M.; Kennedy, B.S.; Duffy, D.L.; Serpell, J.A.; MacLean, E.L. Predictive Models of Assistance Dog Training Outcomes Using the Canine Behavioral Assessment and Research Questionnaire and a Standardized Temperament Evaluation. Front. Vet. Sci. 2019, 6, doi:10.3389/fvets.2019.00049.
Weiss, E.; Greenberg, G. Service dog selection tests: Effectiveness for dogs from animal shelters. Appl. Anim. Behav. Sci. 1997, 53, 297–308, doi:10.1016/S0168‐1591(96)01176‐8.
Diederich, C.; Giffroy, J.M. Behavioural testing in dogs: A review of methodology in search for standardisation. Appl. Animal Behav. Sci. 2006, 97, 51–72.
Jenkins, E.K.; DeChant, M.T.; Perry, E.B. When the nose doesn’t know: Canine olfactory function associated with health, management, and potential links to microbiota. Front. Vet. Sci. 2018, 5, doi:10.3389/fvets.2018.00056.
Brownell, D.A.; Marsolais, M. The Brownell‐Marsolais scale: A proposal for the quantitative evaluation of SAR/Disaster K9 Candidates. Adv Rescue Technol 2000, 57–67, doi:10.1017/CBO9781107415324.004.
Alexander, M. Ben; Friend, T.; Haug, L. Obedience training effects on search dog performance. Appl. Anim. Behav. Sci. 2011, 132, 152–159, doi:10.1016/j.applanim.2011.04.008.
DeGreeff, L.E.; Weakley‐Jones, B.; Furton, K.G. Creation of training aids for human remains detection canines utilizing a non‐contact, dynamic airflow volatile concentration technique. Forensic Sci. Int. 2012, 217, 32–38, doi:10.1016/j.forsciint.2011.09.023.
Larson, D.O.; Vass, A.A.; Wise, M. Advanced Scientific Methods and Procedures in the Forensic Investigation of Clandestine Graves. J. Contemp. Crim. Justice 2011, 27, 149–182, doi:10.1177/1043986211405885.
Christiansen, F.; Bakken, M.; Braastad, B. Behavioural differences between three breed groups of hunting dogs confronted with domestic sheep. Appl Anim Behav Sci 2001, 72, 115–129, doi:doi:10.1016/S0168‐1591.
Cablk, M.E.; Heaton, J.S. Accuracy and reliability of dogs in surveying for desert tortoise (Gopherus agassizii). Ecol. Appl. 2006, 16, 1926–1935, doi:10.1890/1051‐0761(2006)016[1926:AARODI]2.0.CO;2.
Branson, N.; Cobb, M.; McGreevy, P. 2009. Australian Working Dog Survey Report; Australian Government Department of Agriculture, Fisheries and Forestry: Canbera, Australia, February 2010.
Early, J.B.; Arnott, E.R.; Wade, C.M.; McGreevy, P.D. Manual muster: A critical analysis of the use of common terms in Australian working dog manuals. J. Vet. Behav. Clin. Appl. Res. 2014, 9, 370–374, doi:10.1016/j.jveb.2014.07.003.
Gácsi, M.; Gyoöri, B.; Virányi, Z.; Kubinyi, E.; Range, F.; Belényi, B.; Miklósi, Á. Explaining Dog Wolf Differences in Utilizing Human Pointing Gestures: Selection for Synergistic Shifts in the Development of Some Social Skills. PLoS One 2009, 4, e6584, doi:10.1371/journal.pone.0006584.
Rooney, N.; Gaines, S.; Hiby, E. A practitioner’s guide to working dog welfare. J. Vet. Behav. Clin. Appl. Res. 2009, 4, 127–134, doi:10.1016/j.jveb.2008.10.037.
Lopes, B.; Alves, J.; Santos, A.; Pereira, G.D.G. Effect of a stimulating environment during the socialization period on the performance of adult police working dogs. J. Vet. Behav. Clin. Appl. Res. 2015, 10, 199–203, doi:10.1016/j.jveb.2015.01.002.
Duffy, D.L.; Serpell, J.A. Predictive validity of a method for evaluating temperament in young guide and service dogs. Appl. Anim. Behav. Sci. 2012, 138, 99–109, doi:10.1016/j.applanim.2012.02.011.
MacLean, E.L.; Hare, B. Enhanced Selection of Assistance and Explosive Detection Dogs Using Cognitive Measures. Front. Vet. Sci. 2018, 5, doi:10.3389/fvets.2018.00236.
Cook, P.F.; Spivak, M.; Berns, G.S. One pair of hands is not like another: caudate BOLD response in dogs depends on signal source and canine temperament. PeerJ 2014, 2, e596, doi:10.7717/peerj.596.
Deldalle, S.; Gaunet, F. Effects of 2 training methods on stress‐related behaviors of the dog (Canis familiaris) and on the dog‐owner relationship. J. Vet. Behav. Clin. Appl. Res. 2014, 9, 58–65, doi:10.1016/j.jveb.2013.11.004.
Doré, F.Y.; Mercier, P. Foundation of learning and cognition. Press. universtitaire Lille 1992.
Rooney, N.J.; Cowan, S. Training methods and owner‐dog interactions: Links with dog behaviour and learning ability. Appl. Anim. Behav. Sci. 2011, 132, 169–177, doi:10.1016/j.applanim.2011.03.007.
Blackwell, E.J.; Twells, C.; Seawright, A.; Casey, R.A. The relationship between training methods and the occurrence of behavior problems, as reported by owners, in a population of domestic dogs. J. Vet. Behav. Clin. Appl. Res. 2008, 3, 207–217, doi:10.1016/j.jveb.2007.10.008.
Topoleski, J.; Schultz, C.A.; Warren, W.G. Identifying and resolving end of session cues in substance detection canine training. Front. Vet. Sci. 2018, 5, 1–6, doi:10.3389/fvets.2018.00206.
Affenzeller, N.; Palme, R.; Zulch, H. Playful activity post‐learning improves training performance in Labrador Retriever dogs (Canis lupus familiaris). Physiol. Behav. 2017, 168, 62–73, doi:10.1016/j.physbeh.2016.10.014.
Hoffman, E.M.; Curran, A.M.; Dulgerian, N.; Stockham, R.A.; Eckenrode, B.A. Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Sci. Int. 2009, 186, 6–13, doi:10.1016/j.forsciint.2008.12.022.
Alexander, M.B.; Hodges, T.K.; Bytheway, J.; Aitkenhead‐Peterson, J.A. Application of soil in Forensic Science: Residual odor and HRD dogs. Forensic Sci. Int. 2015, 249, 304–313, doi:10.1016/j.forsciint.2015.01.025.
Caraballo, N.I.; Mendel, J.; Holness, H.K.; La Salvia, J.; Moroose, T.; Eckenrode, B.A.; Stockham, R.A.; Furton, K.G.; Mills, D.K. An investigation into concurrent collection of human scent and epithelila skin cells unsing non‐contact sampling device. Forensic Sci. Int. 2016, 148–159.
Rosier, E.; Loix, S.; Develter, W.; Van De Voorde, W.; Tytgat, J.; Cuypers, E. The search for a volatile human specific marker in the decomposition process. PLoS One 2015, 10, 1–15, doi:10.1371/journal.pone.0137341.
Eckenrode, B.A.; Ramsey, S.A.; Stockham, R.A.; Van Berkel, G.J.; Asano, K.G.; Wolf, D.A. Performance evaluation of the Scent Transfer Unit (STU‐100) for organic compound collection and release. J. Forensic Sci. 2006, 51, 780–789, doi:10.1111/j.1556‐4029.2006.00178.x.
Jia, H.; Pustovyy, O.M.; Waggoner, P.; Beyers, R.J.; Schumacher, J.; Wildey, C.; Barrett, J.; Morrison, E.; Salibi, N.; Denney, T.S.; et al. Functional MRI of the olfactory system in conscious dogs. PLoS One 2014, 9, doi:10.1371/journal.pone.0086362.