[en] Cell death escape is one of the most prominent features of tumor cells and closely linked to the dysregulation of members of the Bcl-2 family of proteins. Among those, the anti-apoptotic family member myeloid cell leukemia-1 (MCL-1) acts as a master regulator of apoptosis in various human malignancies. Irrespective of its unfavorable structure profile, independent research efforts recently led to the generation of highly potent MCL-1 inhibitors that are currently evaluated in clinical trials. This offers new perspectives to target a so far undruggable cancer cell dependency. However, a detailed understanding about the tumor and tissue type specific implications of MCL-1 are a prerequisite for the optimal (i.e., precision medicine guided) use of this novel drug class. In this review, we summarize the major functions of MCL-1 with a special focus on cancer, provide insights into its different roles in solid vs. hematological tumors and give an update about the (pre)clinical development program of state-of-the-art MCL-1 targeting compounds. We aim to raise the awareness about the heterogeneous role of MCL-1 as drug target between, but also within tumor entities and to highlight the importance of rationale treatment decisions on a case by case basis.
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–93. DOI: 10.1038/s41580-018-0089-8
Sarosiek KA, et al. Developmental regulation of mitochondrial apoptosis by c-myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell. 2017;31:142–56. DOI: 10.1016/j.ccell.2016.11.011
Gutierrez-Martinez P, et al. Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nat Cell Biol. 2018;20:413–21. DOI: 10.1038/s41556-018-0054-y
Sarosiek KA, Letai A. Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics - recent successes, current challenges and future promise. FEBS J. 2016;283:3523–33. DOI: 10.1111/febs.13714
Deng J, et al. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell. 2007;12:171–85. DOI: 10.1016/j.ccr.2007.07.001
Touzeau C, et al. BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics. Leukemia. 2016;30:761–4. DOI: 10.1038/leu.2015.184
Gong J-N, et al. Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1. Blood. 2016;128:1834–44. DOI: 10.1182/blood-2016-03-704908
Tsherniak A, et al. Defining a cancer dependency map. Cell. 2017;170:564-576.e16. DOI: 10.1016/j.cell.2017.06.010
Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A. 1993;90:3516–20. DOI: 10.1073/pnas.90.8.3516
Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta Mol Cell Res. 2004;1644:83–94. DOI: 10.1016/j.bbamcr.2003.08.012
Sattler M, et al. Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science. 1997;275:983–6. DOI: 10.1126/science.275.5302.983
Denis C, Sopková-de Oliveira Santos J, Bureau R, Voisin-Chiret AS. Hot-Spots of Mcl-1 Protein. J Med Chem. 2020;63:928–43. DOI: 10.1021/acs.jmedchem.9b00983
Senichkin VV, Streletskaia AY, Gorbunova AS, Zhivotovsky B, Kopeina GS. Saga of Mcl-1: regulation from transcription to degradation. Cell Death Differ. 2020;27:405–19. DOI: 10.1038/s41418-019-0486-3
Cl, D. et al. Solution structure of prosurvival Mcl-1 and characterization of its binding by proapoptotic BH3-only ligands. J Biol Chem 2005.
Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80. DOI: 10.1038/cdd.2017.186
Day CL, et al. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J Mol Biol. 2008;380:958–71. DOI: 10.1016/j.jmb.2008.05.071
Opferman JT, et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature. 2003;426:671–6. DOI: 10.1038/nature02067
Senichkin VV, Streletskaia AY, Zhivotovsky B, Kopeina GS. Molecular comprehension of Mcl-1: from gene structure to cancer therapy. Trends Cell Biol. 2019;29:549–62. DOI: 10.1016/j.tcb.2019.03.004
Wang X, et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev. 2013;27:1351–64. DOI: 10.1101/gad.215855.113
Perciavalle RM, et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol. 2012;14:575–83. DOI: 10.1038/ncb2488
Rasmussen ML, et al. A Non-apoptotic Function of MCL-1 in Promoting Pluripotency and Modulating Mitochondrial Dynamics in Stem Cells. Stem Cell Reports. 2018;10:684–92. DOI: 10.1016/j.stemcr.2018.01.005
Rasmussen, M. L. et al. MCL-1 Inhibition by selective BH3 mimetics disrupts mitochondrial dynamics causing loss of viability and functionality of human cardiomyocytes. iScience 23, (2020).
Chen G, et al. Targeting Mcl-1 enhances DNA replication stress sensitivity to cancer therapy. J Clin Invest. 2018;128:500–16. DOI: 10.1172/JCI92742
Germain M, et al. MCL-1 is a stress sensor that regulates autophagy in a developmentally regulated manner. EMBO J. 2011;30:395–407. DOI: 10.1038/emboj.2010.327
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. DOI: 10.1016/j.cell.2011.02.013
AACR Project GENIE. Powering precision medicine through an international consortium. Cancer Discov. 2017;7:818–31. DOI: 10.1158/2159-8290.CD-17-0151
Lv X, et al. Somatic mutations in myeloid cell leukemia-1 contribute to the pathogenesis of glioma by prolonging its half-life. Mol Med Rep. 2015;12:1265–71. DOI: 10.3892/mmr.2015.3493
Beroukhim R, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905. DOI: 10.1038/nature08822
Campbell KJ, et al. MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis. 2018;9:1–14. DOI: 10.1038/s41419-017-0035-2
Zhou P, et al. MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood. 2001;97:3902–9. DOI: 10.1182/blood.V97.12.3902
Grabow S, Delbridge ARD, Aubrey BJ, Vandenberg CJ, Strasser A. Loss of a single Mcl-1 allele inhibits MYC-driven lymphomagenesis by sensitizing pro-B cells to apoptosis. Cell Rep. 2016;14:2337–47. DOI: 10.1016/j.celrep.2016.02.039
Glaser SP, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012;26:120–5. DOI: 10.1101/gad.182980.111
Grabow S, Delbridge ARD, Valente LJ, Strasser A. MCL-1 but not BCL-XL is critical for the development and sustained expansion of thymic lymphoma in p53-deficient mice. Blood. 2014;124:3939–46. DOI: 10.1182/blood-2014-09-601567
Spinner S, et al. Re-activation of mitochondrial apoptosis inhibits T-cell lymphoma survival and treatment resistance. Leukemia. 2016;30:1520–30. DOI: 10.1038/leu.2016.49
Schwickart M, et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 2010;463:103–7. DOI: 10.1038/nature08646
Wei G, et al. Chemical genomics identifies small-molecule MCL1 repressors and BCL-xL as a predictor of MCL1 dependency. Cancer Cell. 2012;21:547–62. DOI: 10.1016/j.ccr.2012.02.028
Brunelle JK, Ryan J, Yecies D, Opferman JT, Letai A. MCL-1-dependent leukemia cells are more sensitive to chemotherapy than BCL-2-dependent counterparts. J Cell Biol. 2009;187:429–42. DOI: 10.1083/jcb.200904049
Wertz IE, et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 2011;471:110–4. DOI: 10.1038/nature09779
Yeh C-H, Bellon M, Pancewicz-Wojtkiewicz J, Nicot C. Oncogenic mutations in the FBXW7 gene of adult T-cell leukemia patients. Proc Natl Acad Sci U S A. 2016;113:6731–6. DOI: 10.1073/pnas.1601537113
Inuzuka H, et al. SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 2011;471:104–9. DOI: 10.1038/nature09732
Min S-H, et al. Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol Cell. 2012;46:771–83. DOI: 10.1016/j.molcel.2012.04.012
Peterson LF, et al. Targeting deubiquitinase activity with a novel small-molecule inhibitor as therapy for B-cell malignancies. Blood. 2015;125:3588–97. DOI: 10.1182/blood-2014-10-605584
Zhang S, et al. Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun. 2018;9:215. DOI: 10.1038/s41467-017-02693-9
Lee K-M, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab. 2017;26:633-647.e7. DOI: 10.1016/j.cmet.2017.09.009
Wei G, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006;10:331–42. DOI: 10.1016/j.ccr.2006.09.006
Elgendy M, et al. Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis. Cancer Cell. 2019;35:798-815.e5. DOI: 10.1016/j.ccell.2019.03.007
Ni Chonghaile T, et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011;334:1129–33. DOI: 10.1126/science.1206727
Nangia V, et al. Exploiting MCL1 dependency with combination MEK + MCL1 inhibitors leads to induction of apoptosis and tumor regression in KRAS-mutant non-small cell lung cancer. Cancer Discov. 2018;8:1598–613. DOI: 10.1158/2159-8290.CD-18-0277
Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).
Song K-A, et al. Increased Synthesis of MCL-1 protein underlies initial survival of EGFR-mutant lung cancer to EGFR inhibitors and provides a novel drug target. Clin cancer Res. 2018;24:5658–72. DOI: 10.1158/1078-0432.CCR-18-0304
Borner MM, et al. Expression of apoptosis regulatory proteins of the Bcl-2 family and p53 in primary resected non-small-cell lung cancer. Br J Cancer. 1999;79:952–8. DOI: 10.1038/sj.bjc.6690152
Nakano T, Go T, Nakashima N, Liu D, Yokomise H. Overexpression of antiapoptotic MCL-1 predicts worse overall survival of patients with non-small cell lung cancer. Anticancer Res. 2020;40:1007–14. DOI: 10.21873/anticanres.14035
Inoue-Yamauchi A, et al. Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy. Nat Commun. 2017;8:16078. DOI: 10.1038/ncomms16078
Yasuda Y, et al. MCL1 inhibition is effective against a subset of small-cell lung cancer with high MCL1 and low BCL-X(L) expression. Cell Death Dis. 2020;11:177. DOI: 10.1038/s41419-020-2379-2
Perillo B, Sasso A, Abbondanza C, Palumbo G. 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence. Mol Cell Biol. 2000;20:2890–901. DOI: 10.1128/MCB.20.8.2890-2901.2000
Louault K, et al. Interactions between cancer-associated fibroblasts and tumor cells promote MCL-1 dependency in estrogen receptor-positive breast cancers. Oncogene. 2019;38:3261–73. DOI: 10.1038/s41388-018-0635-z
Ding Q, et al. Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3beta activity and associates with poor prognosis in human breast cancer. Cancer Res. 2007;67:4564–71. DOI: 10.1158/0008-5472.CAN-06-1788
Williams MM, et al. Key survival factor, Mcl-1, correlates with sensitivity to combined Bcl-2/Bcl-xL blockade. Mol Cancer Res. 2017;15:259–68. DOI: 10.1158/1541-7786.MCR-16-0280-T
Balko JM, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232–45. DOI: 10.1158/2159-8290.CD-13-0286
Williams MM, et al. Therapeutic inhibition of Mcl-1 blocks cell survival in estrogen receptor-positive breast cancers. Oncotarget. 2019;10:5389–402. DOI: 10.18632/oncotarget.27070
Vallet S, et al. Rationally derived drug combinations with the novel Mcl-1 inhibitor EU-5346 in breast cancer. Breast Cancer Res Treat. 2019;173:585–96. DOI: 10.1007/s10549-018-5022-5
Merino, D. et al. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci. Transl. Med. 9, (2017).
Lim SY, Menzies AM, Rizos H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer. 2017;123:2118–29. DOI: 10.1002/cncr.30435
Cook SJ, Stuart K, Gilley R, Sale MJ. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 2017;284:4177–95. DOI: 10.1111/febs.14122
Lee EF, et al. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis. 2019a;10:342. DOI: 10.1038/s41419-019-1568-3
Mukherjee N, et al. Use of a MCL-1 inhibitor alone to de-bulk melanoma and in combination to kill melanoma initiating cells. Oncotarget. 2017;8:46801–17. DOI: 10.18632/oncotarget.8695
Sale MJ, et al. Targeting melanoma’s MCL1 bias unleashes the apoptotic potential of BRAF and ERK1/2 pathway inhibitors. Nat Commun. 2019;10:5167. DOI: 10.1038/s41467-019-12409-w
Lee W-S, et al. Myeloid cell leukemia-1 is associated with tumor progression by inhibiting apoptosis and enhancing angiogenesis in colorectal cancer. Am J Cancer Res. 2015;5:101–13.
Wilhelm SM, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7:3129–40. DOI: 10.1158/1535-7163.MCT-08-0013
Yu C, et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9006. Oncogene. 2005;24:6861–9. DOI: 10.1038/sj.onc.1208841
Tong J, Tan S, Zou F, Yu J, Zhang L. FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation. Oncogene. 2017;36:787–96. DOI: 10.1038/onc.2016.247
Tong J, et al. Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res. 2017;77:2512–21. DOI: 10.1158/0008-5472.CAN-16-3242
He K, et al. BRAFV600E-dependent Mcl-1 stabilization leads to everolimus resistance in colon cancer cells. Oncotarget. 2016;7:47699–710. DOI: 10.18632/oncotarget.10277
Kawakami H, et al. Mutant BRAF upregulates MCL-1 to confer apoptosis resistance that is reversed by MCL-1 antagonism and cobimetinib in colorectal cancer. Mol Cancer Ther. 2016;15:3015–27. DOI: 10.1158/1535-7163.MCT-16-0017
Lin L, et al. Trametinib potentiates TRAIL-induced apoptosis via FBW7-dependent Mcl-1 degradation in colorectal cancer cells. J Cell Mol Med. 2020;24:6822–32. DOI: 10.1111/jcmm.15336
Song X, et al. Mcl-1 inhibition overcomes intrinsic and acquired regorafenib resistance in colorectal cancer. Theranostics. 2020;10:8098–110. DOI: 10.7150/thno.45363
Slomp A, Peperzak V. Role and regulation of pro-survival BCL-2 proteins in multiple myeloma. Front Oncol. 2018;8:533. DOI: 10.3389/fonc.2018.00533
Chonghaile TN, et al. Maturation stage of T-cell acute lymphoblastic leukemia determines BCL-2 versus BCL-XL dependence and sensitivity to ABT-199. Cancer Discov. 2014;4:1074–87. DOI: 10.1158/2159-8290.CD-14-0353
Pei S, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10:536–51. DOI: 10.1158/2159-8290.CD-19-0710
Peperzak V, et al. Mcl-1 is essential for the survival of plasma cells. Nat Immunol. 2013;14:290–7. DOI: 10.1038/ni.2527
Derenne S, et al. Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood. 2002;100:194–9. DOI: 10.1182/blood.V100.1.194
Zhang B, Gojo I, Fenton RG. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood. 2002;99:1885–93. DOI: 10.1182/blood.V99.6.1885
Kumar S, et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood. 2017;130:2401–9. DOI: 10.1182/blood-2017-06-788786
Bajpai R, et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun. 2020;11:1228. DOI: 10.1038/s41467-020-15051-z
Touzeau C, et al. The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28:210–2. DOI: 10.1038/leu.2013.216
Wuillème-Toumi S, et al. Mcl-1 is overexpressed in multiple myeloma and associated with relapse and shorter survival. Leukemia. 2005;19:1248–52. DOI: 10.1038/sj.leu.2403784
Gomez-Bougie P, et al. BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment. Blood. 2018;132:2656–69. DOI: 10.1182/blood-2018-03-836718
Morales AA, et al. Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood. 2011;118:1329–39. DOI: 10.1182/blood-2011-01-327197
Seiller C, et al. Dual targeting of BCL2 and MCL1 rescues myeloma cells resistant to BCL2 and MCL1 inhibitors associated with the formation of BAX/BAK hetero-complexes. Cell Death Dis. 2020;11:316. DOI: 10.1038/s41419-020-2505-1
Slomp A, et al. Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting. Blood Adv. 2019;3:4202–14. DOI: 10.1182/bloodadvances.2019000702
Jourdan M, De Vos J, Mechti N, Klein B. Regulation of Bcl-2-family proteins in myeloma cells by three myeloma survival factors: interleukin-6, interferon-alpha and insulin-like growth factor 1. Cell Death Differ. 2000;7:1244–52. DOI: 10.1038/sj.cdd.4400758
Gupta VA, et al. Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood. 2017;129:1969–79. DOI: 10.1182/blood-2016-10-745059
De Veirman, K. et al. Multiple myeloma induces Mcl-1 expression and survival of myeloid-derived suppressor cells. Oncotarget 6, (2015).
Gomez-Bougie P, Oliver L, Le Gouill S, Bataille R, Amiot M. Melphalan-induced apoptosis in multiple myeloma cells is associated with a cleavage of Mcl-1 and Bim and a decrease in the Mcl-1/Bim complex. Oncogene. 2005;24:8076–9. DOI: 10.1038/sj.onc.1208949
Podar K, et al. A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene. 2008;27:721–31. DOI: 10.1038/sj.onc.1210679
Gomez-Bougie P, et al. Noxa up-regulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res. 2007;67:5418–24. DOI: 10.1158/0008-5472.CAN-06-4322
Fan F, et al. Targeting Mcl-1 for multiple myeloma (MM) therapy: drug-induced generation of Mcl-1 fragment Mcl-1(128–350) triggers MM cell death via c-Jun upregulation. Cancer Lett. 2014;343:286–94. DOI: 10.1016/j.canlet.2013.09.042
Tunquist BJ, Woessner RD, Walker DH. Mcl-1 stability determines mitotic cell fate of human multiple myeloma tumor cells treated with the kinesin spindle protein inhibitor ARRY-520. Mol Cancer Ther. 2010;9:2046–56. DOI: 10.1158/1535-7163.MCT-10-0033
Davids MS, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35:826–33. DOI: 10.1200/JCO.2016.70.4320
Hughes ME, et al. Treatment of patients with relapsed/refractory non-hodgkin lymphoma with venetoclax: a single-center evaluation of off-label use. Clin Lymphoma Myeloma Leuk. 2019;19:791–8. DOI: 10.1016/j.clml.2019.09.612
Prukova D, et al. Cotargeting of BCL2 with Venetoclax and MCL1 with S63845 Is Synthetically Lethal In Vivo in Relapsed Mantle Cell Lymphoma. Clin Cancer Res. 2019;25:4455–65. DOI: 10.1158/1078-0432.CCR-18-3275
Phillips DC, et al. Loss in MCL-1 function sensitizes non-Hodgkin’s lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J. 2015;5:e368. DOI: 10.1038/bcj.2015.88
Smith VM, et al. Dual dependence on BCL2 and MCL1 in T-cell prolymphocytic leukemia. Blood Adv. 2020a;4:525–9. DOI: 10.1182/bloodadvances.2019000917
Caenepeel S, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Discov. 2018;8:1582–97.
Smith VM, et al. Specific interactions of BCL-2 family proteins mediate sensitivity to BH3-mimetics in diffuse large B-cell lymphoma. Haematologica. 2020b;105:2150–63. DOI: 10.3324/haematol.2019.220525
Kotschy A, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–82. DOI: 10.1038/nature19830
Manzano M, et al. Gene essentiality landscape and druggable oncogenic dependencies in herpesviral primary effusion lymphoma. Nat Commun. 2018;9:3263. DOI: 10.1038/s41467-018-05506-9
Zhao S, et al. Efficacy of venetoclax in high risk relapsed mantle cell lymphoma (MCL) - outcomes and mutation profile from venetoclax resistant MCL patients. Am J Hematol. 2020;95:623–9. DOI: 10.1002/ajh.25796
Kelly GL, et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev. 2014;28:58–70. DOI: 10.1101/gad.232009.113
Kitada S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood. 1998;91:3379–89. DOI: 10.1182/blood.V91.9.3379
Bannerji R, et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21:1466–71. DOI: 10.1200/JCO.2003.06.012
Balakrishnan K, et al. Regulation of Mcl-1 expression in context to bone marrow stromal microenvironment in chronic lymphocytic leukemia. Neoplasia. 2014;16:1036–46. DOI: 10.1016/j.neo.2014.10.002
Gobessi S, et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia. 2009;23:686–97. DOI: 10.1038/leu.2008.346
Bojarczuk K, et al. BCR signaling inhibitors differ in their ability to overcome Mcl-1-mediated resistance of CLL B cells to ABT-199. Blood. 2016;127:3192–201. DOI: 10.1182/blood-2015-10-675009
Roberts AW, et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:488–96. DOI: 10.1200/JCO.2011.34.7898
Klanova, M. & Klener, P. BCL-2 proteins in pathogenesis and therapy of B-cell non-hodgkin lymphomas. Cancers (Basel). 12, (2020).
Chen R, Keating MJ, Gandhi V, Plunkett W. Transcription inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell death. Blood. 2005;106:2513–9. DOI: 10.1182/blood-2005-04-1678
Yi X, et al. AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia. Clin cancer Res. 2020;26:3856–67. DOI: 10.1158/1078-0432.CCR-19-1397
Chua, C. C. et al. Chemotherapy and venetoclax in elderly acute myeloid leukemia trial (CAVEAT): a phase ib dose-escalation study of venetoclax combined with modified intensive chemotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. JCO2000572 (2020). doi: https://doi.org/10.1200/JCO.20.00572
Wei AH, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135:2137–45. DOI: 10.1182/blood.2020004856
DiNardo CD, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135:791–803. DOI: 10.1182/blood.2019003988
Yoshimoto G, et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood. 2009;114:5034–43. DOI: 10.1182/blood-2008-12-196055
Breitenbuecher F, et al. A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML. Blood. 2009;113:4063–73. DOI: 10.1182/blood-2007-11-126664
Kaufmann SH, et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood. 1998;91:991–1000. DOI: 10.1182/blood.V91.3.991.991_991_1000
Li X-X, et al. Increased MCL-1 expression predicts poor prognosis and disease recurrence in acute myeloid leukemia. Onco Targets Ther. 2019;12:3295–304. DOI: 10.2147/OTT.S194549
Kuusanmäki H, et al. Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia. Haematologica. 2020;105:708–20. DOI: 10.3324/haematol.2018.214882
Ewald L, Dittmann J, Vogler M, Fulda S. Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML. Cell Death Dis. 2019;10:917. DOI: 10.1038/s41419-019-2156-2
Moujalled DM, et al. Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia. 2019;33:905–17. DOI: 10.1038/s41375-018-0261-3
Pan R, et al. Inhibition of Mcl-1 with the pan-Bcl-2 family inhibitor (-)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia. Blood. 2015;126:363–72. DOI: 10.1182/blood-2014-10-604975
Lin KH, et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci Rep. 2016;6:27696. DOI: 10.1038/srep27696
Fiskus W, et al. Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J. 2019;9:4. DOI: 10.1038/s41408-018-0165-5
Stevens BM, et al. PTPN11 mutations confer unique metabolic properties and increase resistance to venetoclax and azacitidine in acute myelogenous leukemia. Blood. 2018;132:909. DOI: 10.1182/blood-2018-99-119806
Chen L, et al. Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition. Leukemia. 2015;29:1290–300. DOI: 10.1038/leu.2015.18
Czabotar PE, et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci U S A. 2007;104:6217–22. DOI: 10.1073/pnas.0701297104
Day CL, et al. Solution structure of prosurvival Mcl-1 and characterization of its binding by proapoptotic BH3-only ligands. J Biol Chem. 2005;280:4738–44. DOI: 10.1074/jbc.M411434200
Soderquist R, Eastman A. BCL2 inhibitors as anticancer drugs: a plethora of misleading BH3 mimetics. Mol Cancer Ther. 2016;15:2011–7. DOI: 10.1158/1535-7163.MCT-16-0031
Gregory GP, et al. CDK9 inhibition by dinaciclib potently suppresses Mcl-1 to induce durable apoptotic responses in aggressive MYC-driven B-cell lymphoma in vivo. Leukemia. 2015;29:1437–41. DOI: 10.1038/leu.2015.10
Wu X, Luo Q, Liu Z. Ubiquitination and deubiquitination of MCL1 in cancer: deciphering chemoresistance mechanisms and providing potential therapeutic options. Cell Death Dis. 2020;11:556. DOI: 10.1038/s41419-020-02760-y
Szlávik Z, et al. Structure-guided discovery of a selective MCL-1 inhibitor with cellular activity. J Med Chem. 2019;62:6913–24. DOI: 10.1021/acs.jmedchem.9b00134
Brennan MS, et al. Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood. 2018;132:1573–83. DOI: 10.1182/blood-2018-06-859405
Halilovic E, et al. Abstract 4477: MIK665/S64315, a novel Mcl-1 inhibitor, in combination with Bcl-2 inhibitors exhibits strong synergistic antitumor activity in a range of hematologic malignancies. Cancer Res. 2019;79:4477.
Tron AE, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9:5341. DOI: 10.1038/s41467-018-07551-w
Caenepeel S, et al. Abstract 6218: Discovery and preclinical evaluation of AMG 397, a potent, selective and orally bioavailable MCL1 inhibitor. Cancer Res. 2020;80:6218.
Ramsey HE, et al. A Novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 2018;8:1566–81. DOI: 10.1158/2159-8290.CD-18-0140
Lee T, et al. Discovery of potent myeloid cell leukemia-1 (Mcl-1) inhibitors that demonstrate in vivo activity in mouse xenograft models of human cancer. J Med Chem. 2019b;62:3971–88. DOI: 10.1021/acs.jmedchem.8b01991
Lu X, Liu Y-C, Orvig C, Liang H, Chen Z-F. Discovery of β-carboline copper(II) complexes as Mcl-1 inhibitor and in vitro and in vivo activity in cancer models. Eur J Med Chem. 2019;181:111567. DOI: 10.1016/j.ejmech.2019.111567
He Y, et al. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. J Hematol Oncol. 2020;13:103. DOI: 10.1186/s13045-020-00924-z
Papatzimas JW, et al. From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). J Med Chem. 2019;62:5522–40. DOI: 10.1021/acs.jmedchem.9b00455
Wang Z, et al. Proteolysis targeting chimeras for the selective degradation of Mcl-1/Bcl-2 derived from nonselective target binding ligands. J Med Chem. 2019;62:8152–63. DOI: 10.1021/acs.jmedchem.9b00919
Spencer, A. et al. A phase 1, first-in-human study of AMG 176, a selective MCL-1 inhibitor, in patients with relapsed or refractory multiple myeloma. Clin. Lymphoma, Myeloma Leuk. 19, e53–e54 (2019).
Certo M, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9:351–65. DOI: 10.1016/j.ccr.2006.03.027
Foight GW, Ryan JA, Gullá SV, Letai A, Keating AE. Designed BH3 peptides with high affinity and specificity for targeting Mcl-1 in cells. ACS Chem Biol. 2014;9:1962–8. DOI: 10.1021/cb500340w