Bousquet, J.; Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany, Department of Dermatology and Allergy, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany, MACVIA-France and CHU, Montpellier, France
Anto, J. M.; Centre for Research in Environmental Epidemiology (CREAL), ISGlobAL, Barcelona, Spain, IMIM (Hospital del Mar Research Institute), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
Czarlewski, W.; MASK-Air, Montpellier, France, Medical Consulting Czarlewski, Levallois, France
Haahtela, T.; Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Finland
Fonseca, S. C.; Faculty of Sciences, GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, University of Porto, Porto, Portugal
Iaccarino, G.; Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
Blain, H.; Department of Geriatrics, Montpellier University hospital and MUSE, Montpellier, France
Vidal, Alain
Sheikh, A.; Usher Institute, University of Edinburgh, United Kingdom
Akdis, C. A.; Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
Zuberbier, T.; Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany, Department of Dermatology and Allergy, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
Hamzah Abdul Latiff, A.
Abdullah, B.
Aberer, W.
Abusada, N.
Adcock, I.
Afani, A.
Agache, I.
Aggelidis, X.
Agustin, J.
Akdis, M.
Al-Ahmad, M.
Al-Zahab Bassam, A.
Alburdan, H.
Aldrey-Palacios, O.
Alvarez Cuesta, E.
Alwan Salman, H.
Alzaabi, A.
Amade, S.
Ambrocio, G.
Angles, R.
Annesi-Maesano, I.
Ansotegui, I. J.
Anto, J.
Ara Bardajo, P.
Arasi, S.
Arshad, H.
Cristina Artesani, M.
Asayag, E.
Avolio, F.
Azhari, K.
Bachert, C.
Bagnasco, D.
Baiardini, I.
Bajrović, N.
Bakakos, P.
Bakeyala Mongono, S.
Balotro-Torres, C.
Barba, S.
Barbara, C.
Barbosa, E.
Barreto, B.
Bartra, J.
Bateman, E. D.
Battur, L.
Bedbrook, A.
Bedolla Barajas, M.
Beghé, B.
Bekere, A.
Bel, E.
Ben Kheder, A.
Benson, M.
Berghea, E. C.
Bergmann, K.-C.
Bernardini, R.
Bernstein, D.
Bewick, M.
Bialek, S.
Białoszewski, A.
Bieber, T.
Billo, N. E.
Bilo, M. B.
Bindslev-Jensen, C.
Bjermer, L.
Bobolea, I.
Bochenska Marciniak, M.
Bond, C.
Boner, A.
Bonini, M.
Bonini, S.
Bosnic-Anticevich, S.
Bosse, I.
Botskariova, S.
Bouchard, J.
Boulet, L.-P.
Bourret, R.
Bousquet, P.
Braido, F.
Briggs, A.
Brightling, C. E.
Brozek, J.
Brussino, L.
Buhl, R.
Bumbacea, R.
Buquicchio, R.
Burguete Cabañas, M.-T.
Bush, A.
Busse, W. W.
Buters, J.
Caballero-Fonseca, F.
Calderon, M. A.
Calvo, M.
Camargos, P.
Camuzat, T.
Canevari, F. R.
Cano, A.
Canonica, G. W.
Capriles-Hulett, A.
Caraballo, L.
Cardona, V.
Carlsen, K.-H.
Carmon Pirez, J.
Caro, J.
Carr, W.
Carreiro-Martins, P.
Carreon-Asuncion, F.
Carriazo, A.-M.
Casale, T.
Castor, M.-A.
Castro, E.
Caviglia, A. G.
Cecchi, L.
Cepeda Sarabia, A.
Chandrasekharan, R.
Chang, Y.-S.
Chato-Andeza, V.
Chatzi, L.
Chatzidaki, C.
Chavannes, N. H.
Chaves Loureiro, C.
Chelninska, M.
Chen, Yuzhi
Cheng, L.
Chinthrajah, S.
Chivato, T.
Chkhartishvili, E.
Christoff, G.
Chrystyn, H.
Chu, D. K.
Chua, A.
Chuchalin, A.
Chung, K. F.
Cicerán, A.
Cingi, C.
Ciprandi, G.
Cirule, I.
Coelho, A. C.
Compalati, E.
Constantinidis, J.
Correia de Sousa, J.
Costa, E. M.
Costa, D.
Costa Domínguez, M. D. C.
Coste, A.
Cottini, M.
Cox, L.
Crisci, C.
Crivellaro, M. A.
Cruz, A. A.
Cullen, J.
Custovic, A.
Cvetkovski, B.
D'Amato, G.
da Silva, J.
Dahl, R.
Dahlen, S.-E.
Daniilidis, V.
DarjaziniNahhas, L.
Darsow, U.
Davies, J.
de Blay, F.
De Feo, G.
De Guia, E.
de los Santos, C.
De Manuel Keenoy, E.
De Vries, G.
Deleanu, D.
Demoly, P.
Denburg, J.
Devillier, P.
Didier, A.
Dimic Janjic, S.
Dimou, M.
Dinh-Xuan, A. T.
Djukanovic, R.
Do Ceu Texeira, M.
Dokic, D.
Dominguez Silva, M. G.
Douagui, H.
Douladiris, N.
Doulaptsi, M.
Dray, G.
Dubakiene, R.
Dupas, E.
Durham, S.
Duse, M.
Dykewicz, M.
Ebo, D.
Edelbaher, N.
Eiwegger, T.
Eklund, P.
El-Gamal, Y.
El-Sayed, Z. A.
El-Sayed, S. S.
El-Seify, M.
Emuzyte, R.
Enecilla, L.
Erhola, M.
Espinoza, H.
Espinoza Contreras, J. G.
Farrell, J.
Fernandez, L.
Fink Wagner, A.
Fiocchi, A.
Fokkens, W. J.
Lenia, F.
Fonseca, J. A.
Fontaine, J.-F.
Forastiere, F.
Fuentes Pèrez, J. M.
Gaerlan–Resureccion, E.
Gaga, M.
Gálvez Romero, J. L.
Gamkrelidze, A.
Garcia, A.
García Cobas, C. Y.
García Cruz, M. D. L. L. H.
Gayraud, J.
Gelardi, M.
Gemicioglu, B.
Gennimata, D.
Genova, S.
Gereda, J.
Gerth van Wijk, R.
Giuliano, A.
Gomez, M.
González Diaz, S.
Gotua, M.
Grigoreas, C.
Grisle, I.
Gualteiro, L.
Guidacci, M.
Guldemond, N.
Gutter, Z.
Guzmán, A.
Halloum, R.
Halpin, D.
Hamelmann, E.
Hammadi, S.
Harvey, R.
Heffler, E.
Heinrich, J.
Hejjaoui, A.
Hellquist-Dahl, B.
Hernández Velázquez, L.
Hew, M.
Hossny, E.
Howarth, P.
Hrubiško, M.
Huerta Villalobos, Y. R.
Humbert, M.
Salina, H.
Hyland, M.
Ibrahim, M.
Ilina, N.
Illario, M.
Incorvaia, C.
Infantino, A.
Irani, C.
Ispayeva, Z.
Ivancevich, J.-C.
E.J. Jares, E.
Jarvis, D.
Jassem, E.
Jenko, K.
Jiméneracruz Uscanga, R. D.
Johnston, S. L.
Joos, G.
Jošt, M.
Julge, K.
Jung, K.-S.
Just, J.
Jutel, M.
Kaidashev, I.
Kalayci, O.
Kalyoncu, F.
Kapsali, J.
Kardas, P.
Karjalainen, J.
Kasala, C. A.
Katotomichelakis, M.
Kavaliukaite, L.
Kazi, B. S.
Keil, T.
Keith, P.
Khaitov, M.
Khaltaev, N.
Kim, Y.-Y.
Kirenga, B.
Kleine-Tebbe, J.
Klimek, L.
Koffi N’Goran, B.
Kompoti, E.
Kopac, P.
Koppelman, G.
KorenJeverica, A.
Koskinen, S.
Košnik, M.
Kostov, K. V.
Kowalski, M. L.
Kralimarkova, T.
Kramer Vršcaj, K.
Kraxner, H.
Kreft, S.
Kritikos, V.
Kudlay, D.
Kuitunen, M.
Kull, I.
Kuna, P.
Kupczyk, M.
Kvedariene, V.
Kyriakakou, M.
Lalek, N.
Landi, M.
Lane, S.
Larenas-Linnemann, D.
Lau, S.
Laune, D.
Lavrut, J.
Le, L.
Lenzenhuber, M.
Lessa, M.
Levin, M.
Li, J.
Lieberman, P.
Liotta, G.
Lipworth, B.
Liu, X.
Lobo, R.
Lodrup Carlsen, K. C.
Lombardi, C.
Louis, Renaud ; Université de Liège - ULiège > Département des sciences cliniques > Pneumologie - Allergologie
Stafford N. Covid-19: Why Germany's case fatality rate seems so low. BMJ. 2020;369:m1395.
Bousquet J, Czarlewski W, Blain H, Zuberbier T, Anto J. Rapid Response: Why Germany’s case fatality rate seems so low: Is nutrition another possibility. BMJ. 2020. https://www.bmj.com/content/369/bmj.m1395/rr-12
Bousquet J, Anto JM, Iaccarino G, et al. Is diet partly responsible for differences in COVID-19 death rates between and within countries? Clin Transl Allergy. 2020;10:16.
Iddir M, Brito A, Dingeo G, et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020;12(6):1562.
Cena H, Chieppa M. Coronavirus Disease (COVID-19-SARS-CoV-2) and Nutrition: Is Infection in Italy Suggesting a Connection? Front Immunol. 2020;11:944.
Infusino F, Marazzato M, Mancone M, et al. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review. Nutrients. 2020;12(6):1718.
Adams KK, Baker WL, Sobieraj DM. Myth busters: dietary supplements and COVID-19. Ann Pharmacother. 2020;54:820-826.
Sunyer J, Jarvis D, Pekkanen J, et al. Geographic variations in the effect of atopy on asthma in the European Community Respiratory Health Study. J Allergy Clin Immunol. 2004;114:1033-1039.
Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science. 2020;368(6493):860–868.
Rosenthal PJ, Breman JG, Djimde AA, et al. COVID-19: Shining the Light on Africa. Am J Trop Med Hyg. 2020;102(6):1145-1148.
Fonseca S, Rivas I, Romaguera D, et al.Association between consumption of fermented vegetables and COVID-19 mortality at a country level in Europe MEDRXIV/2020/147025; 2020.
Fonseca S, Rivas I, Romaguera D, et al. Association between consumption of vegetables and COVID-19 mortality at a country level in Europe. MedRix. 2020. https://doi.org/10.1101/2020.07.17.20155846
Baker P, Friel S. Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Global Health. 2016;12:80.
Santulli G, Pascale V, Finelli R, et al. We are What We Eat: Impact of Food from Short Supply Chain on Metabolic Syndrome. J Clin Med. 2019;8(12):2061.
Peters A, Krumbholz P, Jager E, et al. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet. 2019;15:e1008145.
Azam-Ali S. Fermented fruits and vegetables. A global perspective; 1998.
Marco ML, Heeney D, Binda S, et al. Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol. 2017;44:94-102.
Rhee SJ, Lee JE, Lee CH. Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Fact. 2011;10(Suppl 1):S5.
Patra JK, Das G, Paramithiotis S, Shin HS. Kimchi and other widely consumed traditional fermented foods of korea: a review. Front Microbiol. 2016;7:1493.
Jung JY, Lee SH, Jeon CO. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl Microbiol Biotechnol. 2014;98:2385-2393.
Chen YS, Otoguro M, Lin YH, et al. Lactococcus formosensis sp. nov., a lactic acid bacterium isolated from yan-tsai-shin (fermented broccoli stems). Int J Syst Evol Microbiol. 2014;64:146-151.
Han X, Yi H, Zhang L, et al. Improvement of fermented Chinese cabbage characteristics by selected starter cultures. J Food Sci. 2014;79:M1387-M1392.
Yoon KY, Woodams EE, Hang YD. Production of probiotic cabbage juice by lactic acid bacteria. Bioresour Technol. 2006;97:1427-1430.
Slattery C, Cotter PD, O'Toole PW. Analysis of health benefits conferred by Lactobacillus species from Kefir. Nutrients. 2019;11(6):1252.
Shiby VK, Mishra HN. Fermented milks and milk products as functional foods–a review. Crit Rev Food Sci Nutr. 2013;53:482-496.
Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16:605-616.
Sanlier N, Gokcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr. 2019;59:506-527.
Lavefve L, Marasini D, Carbonero F. Microbial ecology of fermented vegetables and non-alcoholic drinks and current knowledge on their impact on human health. Adv Food Nutr Res. 2019;87:147-185.
Melini F, Melini V, Luziatelli F, Ficca AG, Ruzzi M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients. 2019;11(5):1189.
Azam M, Mohsin M, Ijaz H, et al. Review - Lactic acid bacteria in traditional fermented Asian foods. Pak J Pharm Sci. 2017;30:1803-1814.
Dimidi E, Cox SR, Rossi M, Whelan K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients. 2019;11(8):1806.
Riggioni C, Comberiati P, Giovannini M, et al. A compendium answering 150 questions on COVID-19 and SARS-CoV-2. Allergy. 2020;75:2503-2541. https://doi.org/10.1111/all.14449
Ruokolainen L, Lehtimäki J, Karkman A, Haahtela T. Holistic view on health: two protective layers of biodiversity. Ann Zool Fennici. 2017;54:39-49.
Septembre-Malaterre A, Remize F, Poucheret P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res Int. 2018;104:86-99.
Kok CR, Hutkins R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr Rev. 2018;76:4-15.
De Filippis F, Pasolli E, Ercolini D. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiol Rev. 2020;44(4):454-489.
Mobeen F, Sharma V, Tulika P. Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Regions. Bioinformation. 2018;14:560-573.
Bibbo S, Ianiro G, Giorgio V, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci. 2016;20:4742-4749.
Tian S, Liu X, Lei P, Zhang X, Shan Y. Microbiota: a mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. J Sci Food Agric. 2018;98:1255-1260.
Segata N. Gut Microbiome: Westernization and the Disappearance of Intestinal Diversity. Curr Biol. 2015;25:R611-R613.
Vangay P, Johnson AJ, Ward TL, et al. US Immigration Westernizes the Human Gut Microbiome. Cell. 2018;175:962-972.
Zuo T, Kamm MA, Colombel JF, Ng SC. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2018;15:440-452.
Wilson AS, Koller KR, Ramaboli MC, et al. Diet and the human gut microbiome: an international review. Dig Dis Sci. 2020;65:723-740.
Yamashita M, Okubo H, Kobuke K, et al. Alteration of gut microbiota by a Westernized lifestyle and its correlation with insulin resistance in non-diabetic Japanese men. J Diabetes Investig. 2019;10:1463-1470.
Angelakis E, Yasir M, Bachar D, et al. Gut microbiome and dietary patterns in different Saudi populations and monkeys. Sci Rep. 2016;6:32191.
Mitsou EK, Kakali A, Antonopoulou S, et al. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. 2017;117:1645-1655.
Saad MJ, Santos A, Prada PO. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology. 2016;31:283-293.
Chen X, Devaraj S. Gut microbiome in obesity, metabolic syndrome, and diabetes. Curr Diab Rep. 2018;18:129.
Lee CJ, Sears CL, Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Ann N Y Acad Sci. 2020;1461:37-52.
Zuo T, Zhang F, Lui GCY, et al. Alterations in Gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020. https://doi.org/10.1053/j.gastro.2020.05.048
Xu K, Cai H, Shen Y, et al. Management of Corona Virus disease-19 (COVID-19): The zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49.
Finucane FM, Davenport C. Coronavirus and obesity: could insulin resistance mediate the severity of Covid-19 infection? Front Public Health. 2020;8:184.
Guzik TJ, Cosentino F. Epigenetics and Immunometabolism in Diabetes and Aging. Antioxid Redox Signal. 2018;29:257-274.
Miedema MD, Maziarz M, Biggs ML, et al. Plasma-free fatty acids, fatty acid-binding protein 4, and mortality in older adults (from the Cardiovascular Health Study). Am J Cardiol. 2014;114:843-848.
Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biomed J. 2017;40:257-262.
Wen H, Gwathmey JK, Xie LH. Oxidative stress-mediated effects of angiotensin II in the cardiovascular system. World J Hypertens. 2012;2:34-44.
Bhatt SR, Lokhandwala MF, Banday AA. Vascular oxidative stress upregulates angiotensin II type I receptors via mechanisms involving nuclear factor kappa B. Clin Exp Hypertens. 2014;36:367-373.
Dalan R, Bornstein SR, El-Armouche A, et al. The ACE-2 in COVID-19: Foe or Friend? Horm Metab Res. 2020;52:257-263.
Sarzani R, Giulietti F, Di Pentima C, Giordano P, Spannella F. Disequilibrium between the classic renin-angiotensin system and its opposing arm in Sars-Cov-2 related lung injury. Am J Physiol Lung Cell Mol Physiol. 2020;319(2):L325-L336.
Bousquet J, Anto J, Czarlewski W, et al. Sulforaphane: from death rate heterogeneity in countries to candidate for prevention of severe COVID-19. Allergy. 2020. https://doi.org/10.22541/au.159493397.79345039
Ren H, Yang Y, Wang F, et al. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19. Cardiovasc Diabetol. 2020;19:58.
Jain S, Buttar HS, Chintameneni M, Kaur G. Prevention of cardiovascular diseases with anti-inflammatory and anti- oxidant nutraceuticals and herbal products: an overview of pre-clinical and clinical studies. Recent Pat Inflamm Allergy Drug Discov. 2018;12:145-157.
Razmpoosh E, Javadi M, Ejtahed HS, Mirmiran P. Probiotics as beneficial agents in the management of diabetes mellitus: a systematic review. Diabetes Metab Res Rev. 2016;32:143-168.
Serino A, Salazar G. Protective role of polyphenols against vascular inflammation, aging and cardiovascular disease. Nutrients. 2019;11(1):53.
Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: The inflammation link and the role of nutrition in potential mitigation. Nutrients. 2020;12(5):1466.
Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29:1727-1745.
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 2018;98:1169-1203.
Cuadrado A, Pajares M, Benito C, et al. Can Activation of NRF2 Be a Strategy against COVID-19? Trends Pharmacol Sci. 2020;41(9):598-610.
Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans. 2015;43:621-626.
Jimenez-Osorio AS, Gonzalez-Reyes S, Pedraza-Chaverri J. Natural Nrf2 activators in diabetes. Clin Chim Acta. 2015;448:182-192.
Pall ML, Levine S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Sheng Li Xue Bao. 2015;67:1-18.
Senger DR, Li D, Jaminet SC, Cao S. Activation of the Nrf2 Cell defense pathway by ancient foods: disease prevention by important molecules and microbes lost from the modern western diet. PLoS One. 2016;11:e0148042.
Uruno A, Yagishita Y, Yamamoto M. The Keap1-Nrf2 system and diabetes mellitus. Arch Biochem Biophys. 2015;566:76-84.
Vasileva LV, Savova MS, Amirova KM, Dinkova-Kostova AT, Georgiev MI. Obesity and NRF2-mediated cytoprotection: Where is the missing link? Pharmacol Res. 2020;156:104760.
Guo Z, Mo Z. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases. J Tissue Eng Regen Med. 2020;14:869-883.
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. 2015;88:314-336.
Rojo de la Vega M, Dodson M, Gross C, et al. Role of Nrf2 and autophagy in acute lung injury. Curr Pharmacol Rep. 2016;2:91-101.
Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol. 2015;225:R83-R99.
McCord JM, Hybertson BM, Cota-Gomez A, Gao B. Nrf2 Activator PB125(R) as a potential therapeutic agent against COVID-19. bioRxiv 2020. https://doi.org/10.1101/2020.05.16.099788
Fang Y, Gao F, Liu Z. Angiotensin-converting enzyme 2 attenuates inflammatory response and oxidative stress in hyperoxic lung injury by regulating NF-kappaB and Nrf2 pathways. QJM. 2019;112:914-924.
Palliyaguru DL, Yuan JM, Kensler TW, Fahey JW. Isothiocyanates: Translating the Power of Plants to People. Mol Nutr Food Res. 2018;62:e1700965.
Oliviero T, Verkerk R, Dekker M. Isothiocyanates from Brassica vegetables-effects of processing, cooking, mastication, and digestion. Mol Nutr Food Res. 2018;62:e1701069.
Vanduchova A, Anzenbacher P, Anzenbacherova E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J Med Food. 2019;22:121-126.
Quirante-Moya S, Garcia-Ibanez P, Quirante-Moya F, Villano D, Moreno DA. The role of brassica bioactives on human health: are we studying it the right way? Molecules 2020;25(7):1591.
Luang-In V, Deeseenthum S, Udomwong P, Saengha W, Gregori M. Formation of sulforaphane and iberin products from thai cabbage fermented by myrosinase-positive bacteria. Molecules. 2018;23(4):955.
Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or sulforaphane: is it the source or dose that matters? Molecules. 2019;24(19):3593.
Hindson J. Brassica vegetable metabolism by gut microbiota. Nat Rev Gastroenterol Hepatol. 2020;17:195.
Houghton CA. Sulforaphane: Its "Coming of Age" as a clinically relevant nutraceutical in the prevention and treatment of chronic disease. Oxid Med Cell Longev. 2019;2019:2716870.
Horowitz RI, Freeman PR. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials. Med Hypotheses. 2020;143:109851.
Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Semin Oncol. 2016;43:146-153.
Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane protects against cardiovascular disease via Nrf2 Activation. Oxid Med Cell Longev. 2015;2015:407580.
Zhou S, Wang J, Yin X, et al. Nrf2 expression and function, but not MT expression, is indispensable for sulforaphane-mediated protection against intermittent hypoxia-induced cardiomyopathy in mice. Redox Biol. 2018;19:11-21.
Xu L, Nagata N, Ota T. Glucoraphanin: a broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte. 2018;7:218-225.
Teng W, Li Y, Du M, Lei X, Xie S, Ren F. Sulforaphane prevents hepatic insulin resistance by blocking serine palmitoyltransferase 3-mediated ceramide biosynthesis. Nutrients. 2019;11(5):1185.
Sun Y, Zhou S, Guo H, et al. Protective effects of sulforaphane on type 2 diabetes-induced cardiomyopathy via AMPK-mediated activation of lipid metabolic pathways and NRF2 function. Metabolism. 2020;102:154002.
Perez S, Talens-Visconti R, Rius-Perez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med. 2017;104:75-103.
An H, Zhai Z, Yin S, Luo Y, Han B, Hao Y. Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus. J Agric Food Chem. 2011;59:3851-3856.
Serata M, Iino T, Yasuda E, Sako T. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in Lactobacillus casei. Microbiology. 2012;158:953-962.
Kong Y, Olejar KJ, On SLW, Chelikani V. The Potential of Lactobacillus spp. for Modulating Oxidative Stress in the Gastrointestinal Tract. Antioxidants 2020;9(7):610.
Lee E, Jung SR, Lee SY, Lee NK, Paik HD, Lim SI. Lactobacillus plantarum Strain Ln4 Attenuates diet-induced obesity, insulin resistance, and changes in hepatic mRNA levels associated with glucose and lipid metabolism. Nutrients. 2018;10(5):643.
Koutnikova H, Genser B, Monteiro-Sepulveda M, et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2019;9:e017995.
Suzumura EA, Bersch-Ferreira AC, Torreglosa CR, et al. Effects of oral supplementation with probiotics or synbiotics in overweight and obese adults: a systematic review and meta-analyses of randomized trials. Nutr Rev. 2019;77:430-450.
Barengolts E, Smith ED, Reutrakul S, Tonucci L, Anothaisintawee T. The effect of probiotic yogurt on glycemic control in type 2 diabetes or obesity: a meta-analysis of nine randomized controlled trials. Nutrients. 2019;11(3):671.
Li B, Evivie SE, Lu J, et al. Lactobacillus helveticus KLDS1.8701 alleviates d-galactose-induced aging by regulating Nrf-2 and gut microbiota in mice. Food Funct. 2018;9:6586-6598.
Xu H, Wang J, Cai J, et al. Protective Effect of Lactobacillus rhamnosus GG and its Supernatant against Myocardial Dysfunction in Obese Mice Exposed to Intermittent Hypoxia is Associated with the Activation of Nrf2 Pathway. Int J Biol Sci. 2019;15:2471-2483.
Zhao Z, Wang C, Zhang L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway. Appl Microbiol Biotechnol. 2019;103:5843-5850.
Qian Y, Zhang J, Zhou X, et al. Lactobacillus plantarum CQPC11 isolated from sichuan pickled cabbages antagonizes d-galactose-induced oxidation and aging in mice. Molecules. 2018;23(11):3026.
El-Baz AM, Khodir AE, Adel El-Sokkary MM, Shata A. The protective effect of Lactobacillus versus 5-aminosalicylic acid in ulcerative colitis model by modulation of gut microbiota and Nrf2/Ho-1 pathway. Life Sci. 2020;256:117927.
Chen YT, Lin YC, Lin JS, Yang NS, Chen MJ. Sugary Kefir Strain Lactobacillus mali APS1 ameliorated hepatic steatosis by regulation of SIRT-1/Nrf-2 and gut microbiota in rats. Mol Nutr Food Res. 2018;62:e1700903.
Xu C, Qiao L, Ma L, et al. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. Int J Nanomedicine. 2019;14:4491-4502.
Mu G, Li H, Tuo Y, Gao Y, Zhang Y. Antioxidative effect of Lactobacillus plantarum Y44 on 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP)-damaged Caco-2 cells. J Dairy Sci. 2019;102:6863-6875.
Kobatake E, Nakagawa H, Seki T, Miyazaki T. Protective effects and functional mechanisms of Lactobacillus gasseri SBT2055 against oxidative stress. PLoS One. 2017;12:e0177106.
Pistol GC, Marin DE, Dragomir C, Taranu I. Synbiotic combination of prebiotic grape pomace extract and probiotic Lactobacillus sp. reduced important intestinal inflammatory markers and in-depth signalling mediators in lipopolysaccharide-treated Caco-2 cells. Br J Nutr. 2018;1-15.
Xia L, Yang Y, Wang J, Jing Y, Yang Q. Impact of TGEV infection on the pig small intestine. Virol J. 2018;15:102.
Kumar R, Seo BJ, Mun MR, et al. Putative probiotic Lactobacillus spp. from porcine gastrointestinal tract inhibit transmissible gastroenteritis coronavirus and enteric bacterial pathogens. Trop Anim Health Prod. 2010;42:1855-1860.
Zhang X, Li P, Zheng Q, Hou J. Lactobacillus acidophilus S-layer protein-mediated inhibition of PEDV-induced apoptosis of Vero cells. Vet Microbiol. 2019;229:159-167.
Hassan SM, Jawad MJ, Ahjel SW, et al. The Nrf2 Activator (DMF) and Covid-19: is there a possible role? Med Arch. 2020;74:134-138.
Romero A, San Hipolito-Luengo A, Villalobos LA, et al. The angiotensin-(1–7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell. 2019;18:e12913.
Cai SM, Yang RQ, Li Y, et al. Angiotensin-(1–7) Improves Liver Fibrosis by Regulating the NLRP3 Inflammasome via Redox Balance Modulation. Antioxid Redox Signal. 2016;24:795-812.
Liu Q, Gao Y, Ci X. Role of Nrf2 and its activators in respiratory diseases. Oxid Med Cell Longev. 2019;2019:7090534.
Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol. 2017;312:L155-L162.
Keleku-Lukwete N, Suzuki M, Yamamoto M. an overview of the advantages of KEAP1-NRF2 system activation during inflammatory disease treatment. Antioxid Redox Signal. 2018;29:1746-1755.
Mitchell F. Vitamin-D and COVID-19: do deficient risk a poorer outcome? Lancet Diabetes Endocrinol. 2020;8:570.
Hati S, Bhattacharyya S. Impact of thiol-disulfide balance on the binding of Covid-19 spike protein with angiotensin-converting enzyme 2 Receptor. ACS Omega. 2020;5:16292-16298.
Tarvainen M, Fabritius M, Yang B. Determination of vitamin K composition of fermented food. Food Chem. 2019;275:515-522.
An SY, Lee MS, Jeon JY, et al. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann Nutr Metab. 2013;63:111-119.
Kim EK, An SY, Lee MS, et al. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr Res. 2011;31:436-443.
Kim SA, Joung H, Shin S. Dietary pattern, dietary total antioxidant capacity, and dyslipidemia in Korean adults. Nutr J. 2019;18:37.
Das G, Paramithiotis S, Sundaram Sivamaruthi B, et al. Traditional fermented foods with anti-aging effect: A concentric review. Food Res Int. 2020;134:109269.
Hong E, Kim GH. GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis) and Its Seed. Prev Nutr Food Sci. 2013;18:218-221.
Park CH, Yeo HJ, Park SY, Kim JK, Park SU. Comparative Phytochemical Analyses and Metabolic Profiling of Different Phenotypes of Chinese Cabbage (Brassica Rapa ssp. Pekinensis). Foods. 2019;8(11):587.
Raghuvanshi R, Grayson AG, Schena I, Amanze O, Suwintono K, Quinn RA. Microbial transformations of organically fermented foods. Metabolites. 2019;9(8):165.
O'Dea K. Westernization and non-insulin-dependent diabetes in Australian Aborigines. Ethn Dis. 1991;1:171-187.
Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes Metab Syndr Obes. 2019;12:2221-2236.
Mirabelli M, Chiefari E, Arcidiacono B, et al. Mediterranean diet nutrients to turn the tide against insulin resistance and related diseases. Nutrients. 12(4):1066.
Martucci M, Ostan R, Biondi F, et al. Mediterranean diet and inflammaging within the hormesis paradigm. Nutr Rev. 2017;75:442-455.
Darwiche G, Hoglund P, Roth B, et al. An Okinawan-based Nordic diet improves anthropometry, metabolic control, and health-related quality of life in Scandinavian patients with type 2 diabetes: a pilot trial. Food Nutr Res. 2016;60:32594.
Van Belle S, Affun-Adegbulu C, Soors W, et al. COVID-19 and informal settlements: an urgent call to rethink urban governance. Int J Equity Health. 2020;19:81.
Correa-Agudelo E, Mersha T, Hernandez A, Branscum AJ, MacKinnon NJ, Cuadros DF. Identification of Vulnerable Populations and Areas at Higher Risk of COVID-19 Related Mortality in the U.S. medRxiv. 2020. https://doi.org/10.1101/2020.07.11.20151563
Abedi V, Olulana O, Avula V, et al. Racial, Economic and Health Inequality and COVID-19 Infection in the United States. medRxiv. 2020. https://doi.org/10.1101/2020.04.26.20079756
Mode NA, Evans MK, Zonderman AB. Race, Neighborhood Economic Status, Income Inequality and Mortality. PLoS One. 2016;11:e0154535.
Abuelgasim E, Saw LJ, Shirke M, Zeinah M, Harky A. COVID-19: Unique public health issues facing Black, Asian and minority ethnic communities. Curr Probl Cardiol. 2020;45:100621.
Lassale C, Gaye B, Hamer M, Gale CR, Batty GD. Ethnic disparities in hospitalisation for COVID-19 in England: The role of socioeconomic factors, mental health, and inflammatory and pro-inflammatory factors in a community-based cohort study. Brain Behav Immun. 2020;88:44-49.
Raisi-Estabragh Z, McCracken C, Bethell MS, et al. Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: study of 1326 cases from the UK Biobank. J Public Health (Oxf). 2020. https://doi.org/10.1093/pubmed/fdaa095
Rubin D, Huang J, Fisher BT, et al. Association of Social Distancing, Population Density, and Temperature With the Instantaneous Reproduction Number of SARS-CoV-2 in Counties Across the United States. JAMA Netw Open. 2020;3:e2016099.
SARS-CoV2 seroprevalence study in Mumbai: NTI Asayog-BMC-TIFR study-First round report. Municipal Corporation of greater Mumbai, Public Realtion Department, 28-07-2020 2020. https://www.livemint.com/news/india/mumbai-sero-prevalence-of-57-found-in-slums-and-16-in-residential-societies-11595952896909.html. Accessed August 18, 2020.
Pereira RJ, Nascimento G, Gratao LHA, Pimenta RS. The risk of COVID-19 transmission in favelas and slums in Brazil. Public Health. 2020;183:42-43.
Smith RE. The effects of dietary supplements that overactivate the Nrf2/ARE System. Curr Med Chem. 2020;27:2077-2094.
Textor J, van der Zander B, Gilthorpe MS, Liskiewicz M, Ellison GT. Robust causal inference using directed acyclic graphs: the R package 'dagitty'. Int J Epidemiol. 2016;45:1887-1894.
Haahtela T, von Hertzen L, Anto JM, et al. Helsinki by nature: The Nature Step to Respiratory Health. Clin Transl Allergy. 2019;9:57.
O’Callaghan C, Anto J. COVID-19: The Disease of the Anthropocene. Env Res. 2020;187:109683.
Vandana UK, Barlaskar NH, Gulzar ABM, et al. Linking gut microbiota with the human diseases. Bioinformation. 2020;16:196-208.
McCall LI, Callewaert C, Zhu Q, et al. Home chemical and microbial transitions across urbanization. Nat Microbiol. 2020;5:108-115.
Haahtela T, Anto J, Bousquet J. Fast and slow health crises of Homo urbanicus: loss of resilience in communicable diseases, like COVID-19, and non-communicable diseases. Porto Med J. 2020.5(4):e073. https://doi.org/10.1097/j.pbj.0000000000000073
Haahtela T, Valovirta E, Bousquet J, Makela M. The Finnish Allergy Programme 2008–2018 works. Eur Resp J. 2017;49(6):2008-2018.