Paper published in a book (Scientific congresses and symposiums)
Probabilistic forecasting for sizing in the capacity firming framework
Dumas, Jonathan; Cornélusse, Bertrand; Fettweis, Xavier et al.
2021In 2021 IEEE Madrid PowerTech
Peer reviewed
 

Files


Full Text
Powertech2021_Probabilistic_forecasting_for_sizing_in_the_capacity_firming_framework.pdf
Author postprint (423.1 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Sizing; stochastic optimization; capacity firming; PV scenarios
Abstract :
[en] This paper proposes a strategy to size a grid-connected photovoltaic plant coupled with a battery energy storage device within the capacity firming specifications of the French Energy Regulatory Commission. The sizing problem is difficult to solve due to the capacity firming framework that consists in a two-phase engagement control with a day ahead nomination and an intraday control to minimize deviations from the planning. The two-phase engagement control is modeled with a deterministic and stochastic approaches. The optimization problems are formulated as mixed-integer quadratic problems with linear constraints, using a Gaussian copula methodology to generate PV scenarios, to approximate the mixed-integer non-linear problem of the capacity firming. Then, a grid search is conducted to approximate the optimal sizing for a given selling price using both the deterministic and stochastic approaches. The case study is composed of PV production monitored on site at the University of Liège (ULiège), Belgium.
Disciplines :
Computer science
Energy
Author, co-author :
Dumas, Jonathan  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
Cornélusse, Bertrand  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
Fettweis, Xavier  ;  Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Giannitrapani, Antonello;  Universit`a di Siena > Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche
Paoletti, Simone
Vicino, Antonio;  Universit`a di Siena > Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche
Language :
English
Title :
Probabilistic forecasting for sizing in the capacity firming framework
Publication date :
10 July 2021
Event name :
2021 IEEE Madrid PowerTech
Event date :
27/06/2021 to 02/07/2021
By request :
Yes
Audience :
International
Main work title :
2021 IEEE Madrid PowerTech
ISBN/EAN :
978-1-6654-3597-0
Peer reviewed :
Peer reviewed
Commentary :
Presented and published at the 14th IEEE PowerTech conference.
Available on ORBi :
since 11 December 2020

Statistics


Number of views
118 (18 by ULiège)
Number of downloads
83 (15 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi