Preparation of poly-D,L-lactide based nanocomposites with polymer-grafted silica by melt blending: Study of molecular, morphological, and mechanical properties
aliphatic polyesters; poly-D,L-lactide; nanocomposites; melt blending; grafting from; grafting to
Abstract :
[en] Polylactide was first designed for the pharmaceutical and medical fields. Unfortunately,
polylactide, especially poly-D,L-lactide (PDLLA), presents too low mechanical properties for a
wide range of applications. The addition of silica nanoparticles should reinforce the mechanical
strength of PDLLA. In order to improve silica/polymer interactions, this study focused on the
preparation of polymer chain grafted silica using two grafting methods. The first strategy relied
upon the ring opening polymerization of D,L-lactide on initiating silica surface (i.e. “grafting
from”). The second approach considered a sol-gel synthesis process in presence of Si-OR
terminated polylactide chains to promote grafting of these chains on new silica particles (i.e.
“grafting to” method). Only “grafting from” silica successfully led to a nanoscale dispersion into
the polyester matrix for silica content up to 5 wt%. A 3 wt% content of this silica allowed improving
Young modulus of 106.0 % and ultimate tensile stress (UTS) of 63.7 % compared to the PDLLA
control.
Disciplines :
Chemistry Materials science & engineering Chemical engineering
Author, co-author :
Regibeau, Nicolas ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Tilkin, Rémi ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Heinrichs, Benoît ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Language :
English
Title :
Preparation of poly-D,L-lactide based nanocomposites with polymer-grafted silica by melt blending: Study of molecular, morphological, and mechanical properties
L. S. Nair, C. T. Laurencin, Prog. Polym. Sci. 2007, 32, 762. https://doi.org/10.1016/j.progpolymsci.2007.05.017.
A. Alves, A. Rita, C. Duarte, J. F. Mano, R. A. Sousa, R. L. Reis, J. Supercrit. Fluids 2012, 65, 32. https://doi.org/10.1016/j.supflu.2012.02.023.
W. Cheng, H. Li, J. Chang, Mater. Lett. 2005, 59, 2214. https://doi.org/10.1016/j.matlet.2005.02.069.
Y.-M. Lin, A. R. Boccaccini, J. Polak, A. E. Bishop, V. Maquet, J. Biomater. Appl. 2006, 21, 109. https://doi.org/10.1177/0885328206057952.
E. Carletti, T. Endogan, N. Hasirci, V. Hasirci, D. Maniglio, A. Motta, C. Migliaresi, J. Tissue Eng. Regen. Med. 2011, 5, 569. https://doi.org/10.1002/term.
K. M. Nampoothiri, N. R. Nair, R. P. John, Bioresour. Technol. 2010, 101, 8493. https://doi.org/10.1016/j.biortech.2010.05.092.
D. Bendix, Polym. Degrad. Stab. 1998, 59, 129. https://doi.org/10.1016/S0141-3910(97)00149-3.
Y. Ramot, M. Haim-Zada, A. J. Domb, A. Nyska, Adv. Drug Deliv. Rev. 2016, 107, 153. https://doi.org/10.1016/j.addr.2016.03.012.
A. Södergard, M. Stolt, Industrial production of high molecular weight poly(lactic acid). in Poly(lactic acid) Synthesis, Structure, Properties, Processing, and Applications (Eds: R. Auras, L.-T. Lim, S. E. M. Selke, H. Tsuji), John Wiley & Sons, Inc., Hoboken, New Jersey 2010, p. 27. https://doi.org/10.1002/9780470649848.ch3.
J.-M. Raquez, R. Ramy-Ratiarison, M. Murariu, P. Dubois, Reactive extrusion of PLA-based materials: from synthesis to reactive melt-blending. in Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications (Eds: A. Jiménez, M. A. Peltzer, R. A. Ruseckaite), Royal Society of Chemistry - Polymer Chemistry Series, Londres 2015, p. 101. https://doi.org/10.1039/9781782624806-00099.
S. Jacobsen, H. G. Fritz, P. Degée, P. Dubois, R. J. Jérôme, Polymer 2000, 41, 3395. https://doi.org/10.1016/S0032-3861(99)00507-8.
J. M. Raquez, P. Degée, Y. Nabar, R. Narayan, P. Dubois, C. R. Chim. 2006, 9, 1370. https://doi.org/10.1016/j.crci.2006.09.004.
S. Jacobsen, H.-G. Fritz, P. Degée, P. Dubois, R. Jérôme, Macromol. Symp. 2000, 273, 261.
A. Gallos, G. Fontaine, S. Bourbigot, Macromol. Mater. Eng. 2013, 298, 1016. https://doi.org/10.1002/mame.201200271.
C. Hopmann, M. Adamy, A. Cohnen, Introduction to reactive extrusion. in Reaction Extrusion (Eds: G. Beyer, C. Hopmann), Wiley-VCH, Weinheim, Allemagne 2017, p. 3. https://doi.org/10.1002/9783527801541.ch1.
N. Régibeau, J. Hurlet, R. G. Tilkin, F. Lombart, B. Heinrichs, C. Grandfils, Mater. Today Commun. 2020, 24, 101208. https://doi.org/10.1016/j.mtcomm.2020.101208.
A. Rapacz-kmita, E. Stodolak-zych, M. Dudek, B. Szaraniek, A. Rozyxka, M. Mosialek, et al., Physicochem. Probl. Miner. Process 2013, 49, 91. https://doi.org/10.5277/ppmp130109.
D. Lahiri, F. Rouzaud, S. Namin, A. Keshri, J. J. Valdés, L. Kos, et al., ACS Appl. Mater. Interfaces 2009, 1, 2470. https://doi.org/10.1021/am900423q.
F. Wu, B. Zhang, W. Yang, Z. Liu, M. Yang, Polymer 2014, 55, 5760. https://doi.org/10.1016/j.polymer.2014.08.070.
H. Lv, S. Song, S. Sun, L. Ren, H. Zhang, Polym. Adv. Technol. 2016, 27, 1156. https://doi.org/10.1002/pat.3777.
S. M. Lai, Y. T. Hsieh, J. Macromol. Sci. Part B Phys. 2016, 55, 211. https://doi.org/10.1080/00222348.2016.1138179.
E. Kontou, M. Niaounakis, P. Georgiopoulos, J. Appl. Polym. Sci. 2011, 122, 1519. https://doi.org/10.1002/app.34234.
T. C. Huang, J. M. Yeh, J. C. Yang, Adv. Mat. Res. 2010, 123–125, 1215. https://doi.org/10.4028/www.scientific.net/amr.123-125.1215.
S. Yan, J. Yin, Y. Yang, Z. Dai, J. Ma, X. Chen, Polymer 2007, 48, 1688. https://doi.org/10.1016/j.polymer.2007.01.037.
Y. Li, C. Han, J. Bian, L. Han, L. Dong, G. Gao, Polym. Compos. 2012, 33, 1719. https://doi.org/10.1002/pc.22306.
Khankrua R, Pivsa-art S, Hiroyuki H. Thermal and Mechanical Properties of Biodegradable polyester / silica Nanocomposites 2013;34:705–13. https://doi.org/10.1016/j.egypro.2013.06.803.
S. Minko, Grafting on solid surfaces:"Grafting to" and “Grafting from” methods. in Polymer Surfaces and Interfaces. Characterization, Modification and Applications, 1st ed. (Ed: M. Stamm), Springer, Berlin 2008, p. 215. https://doi.org/10.1007/978-3-540-73865-7.
Y. Zhang, B. Y. Deng, Q. S. Liu, Plast. Rubber Compos. 2014, 0, 1. https://doi.org/10.1179/1743289814Y.0000000099.
D. Shi, X. Lai, Y. Jiang, C. Yan, Z. Liu, W. Yang, et al., Chinese J. Polym. Sci. 2019, 37, 216. https://doi.org/10.1007/s10118-019-2191-6.
F. Wu, X. Lan, D. Ji, Z. Liu, W. Yang, M. Yang, J. Appl. Polym. Sci. 2013, 129, 3019. https://doi.org/10.1002/app.38585.
N. Régibeau, R. G. Tilkin, C. Grandfils, B. Heinrichs, Mater. Today Commun. 2020, 25, 101610. https://doi.org/10.1016/j.mtcomm.2020.101610.
P. Dubois, P. Degée, R. Jérôme, P. Teyssié, Macromlecules 1992, 25, 2614. https://doi.org/10.1021/ma00036a009.
L. B. Capeletti, I. M. Baibich, I. S. Butler, J. H. Z. Dos Santos, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 133, 619. https://doi.org/10.1016/j.saa.2014.05.072.
R. Anthony, S. T. D. Manickam, P. Kollu, P. V. Chandrasekar, K. Karuppasamy, S. Balakumar, RSC Adv. 2014, 4, 24820. https://doi.org/10.1039/C4RA01960A.
E. Péré, H. Cardy, O. Cairon, M. Simon, S. Lacombe, Vib. Spectrosc. 2001, 25, 163.
J. Osswald, K. T. Fehr, J. Mater. Sci. 2006, 41, 1335. https://doi.org/10.1007/s10853-006-7327-8.
A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P. Orihuela, Appl. Sci. 2017, 7, 1. https://doi.org/10.3390/app7010049.
G. Kister, G. Cassanas, M. Vert, Polymer 1998, 39, 267.
K. Yuniarto, Y. A. Purwanto, S. Purwanto, B. A. Welt, H. K. Purwadaria, T. C. Sunarti, et al., AIP Conf. Proc. 2016, 1725, 1. https://doi.org/10.1063/1.4945555.
A. Prébé, P. Alcouffe, P. Cassagnau, J.-F. Gérard, Mater. Chem. Phys. 2010, 124, 399. https://doi.org/10.1016/j.matchemphys.2010.06.054.
J. T. Yoon, S. C. Lee, Y. G. Jeong, Compos. Sci. Technol. 2010, 70, 776. https://doi.org/10.1016/j.compscitech.2010.01.011.
J. Kim, P. Seidler, L. S. Wan, C. Fill, J. Colloid Interface Sci. 2009, 329, 114. https://doi.org/10.1016/j.jcis.2008.09.031.
D. L. Angst, G. W. Simmons, Langmuir 1991, 7, 2236. https://doi.org/10.1021/la00058a043.
P. H. Mutin, G. Guerrero, A. Vioux, J. Mater. Chem. 2005, 15, 3761. https://doi.org/10.1039/b505422b.
W. He, D. Wu, J. Li, K. Zhang, Y. Xiang, L. Long, S. Qin, J. Yu, Q. Zhang, Bull. Korean Chem. Soc. 2013, 34, 2747. https://doi.org/10.5012/bkcs.2013.34.9.2747.
J. Li, F. Liu, X. Yu, Z. Wu, Y. Wang, RSC Adv. 2016, 6, 42684. https://doi.org/10.1039/C6RA04525A.
J. R. Dorgan, Rheology of poly(lactic acid). in Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications (Eds: R. Auras, L.-T. Lim, S. E. M. Selke, H. Tsuji), John Wiley & Sons, Inc., Hoboken, New Jersey 2010, p. 125. https://doi.org/10.1002/9780470649848.ch10.
J. R. Dorgan, J. S. Williams, D. N. Lewis, J. Rheol. 2002, 43, 1141. https://doi.org/10.1122/1.551041.
L. Basilissi, G. Di Silvestro, H. Farina, M. A. Ortenzi, J. Appl. Polym. Sci. 2012, 128, 1575. https://doi.org/10.1002/APP.38324.
B. M. Pilic, T. I. Radusin, I. S. Ristic, C. Silvestre, V. L. Lazic, S. S. Balos, et al., Hem. Ind. Ind. 2016, 70, 73. https://doi.org/10.2298/hemind150107015p.
J. Zou, T. Ma, J. Zhang, W. He, F. Huang, Polym. Bull. 2011, 67, 1261. https://doi.org/10.1007/s00289-011-0485-0.
B. K. Chen, C. C. Shih, A. F. Chen, Compos. Part A Appl. Sci. Manuf. 2012, 43, 2289. https://doi.org/10.1016/j.compositesa.2012.08.007.
M. Z. Rong, M. Q. Zhang, S. L. Pan, K. Friedrich, J. Appl. Polym. Sci. 2004, 92, 1771. https://doi.org/10.1002/app.20139.
A. Ghanbari, T. V. M. Ndoro, F. Leroy, M. Rahimi, M. C. Böhm, F. Müller-Plathe, Macromolecules 2012, 45, 572. https://doi.org/10.1021/ma202044e.
J. Zhao, D. Wu, J. Han, Z. Jin, Appl. Mech. Mater. 2014, 633, 427. https://doi.org/10.4028/www.scientific.net/AMM.633-634.427.
S. Farah, D. G. Anderson, R. Langer, Adv. Drug Deliv. Rev. 2016, 107, 367. https://doi.org/10.1016/j.addr.2016.06.012.