Preparation of poly-D,L-lactide based nanocomposites with polymer-grafted silica by melt blending: Study of molecular, morphological, and mechanical properties
aliphatic polyesters; poly-D,L-lactide; nanocomposites; melt blending; grafting from; grafting to
Abstract :
[en] Polylactide was first designed for the pharmaceutical and medical fields. Unfortunately,
polylactide, especially poly-D,L-lactide (PDLLA), presents too low mechanical properties for a
wide range of applications. The addition of silica nanoparticles should reinforce the mechanical
strength of PDLLA. In order to improve silica/polymer interactions, this study focused on the
preparation of polymer chain grafted silica using two grafting methods. The first strategy relied
upon the ring opening polymerization of D,L-lactide on initiating silica surface (i.e. “grafting
from”). The second approach considered a sol-gel synthesis process in presence of Si-OR
terminated polylactide chains to promote grafting of these chains on new silica particles (i.e.
“grafting to” method). Only “grafting from” silica successfully led to a nanoscale dispersion into
the polyester matrix for silica content up to 5 wt%. A 3 wt% content of this silica allowed improving
Young modulus of 106.0 % and ultimate tensile stress (UTS) of 63.7 % compared to the PDLLA
control.
Disciplines :
Chemistry Materials science & engineering Chemical engineering
Author, co-author :
Regibeau, Nicolas ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Tilkin, Rémi ; Université de Liège - ULiège > Department of Chemical Engineering > Nanomaterials, Catalysis, Electrochemistry
Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Heinrichs, Benoît ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Language :
English
Title :
Preparation of poly-D,L-lactide based nanocomposites with polymer-grafted silica by melt blending: Study of molecular, morphological, and mechanical properties
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
L. S. Nair, C. T. Laurencin, Prog. Polym. Sci. 2007, 32, 762. https://doi.org/10.1016/j.progpolymsci.2007.05.017.
A. Alves, A. Rita, C. Duarte, J. F. Mano, R. A. Sousa, R. L. Reis, J. Supercrit. Fluids 2012, 65, 32. https://doi.org/10.1016/j.supflu.2012.02.023.
W. Cheng, H. Li, J. Chang, Mater. Lett. 2005, 59, 2214. https://doi.org/10.1016/j.matlet.2005.02.069.
Y.-M. Lin, A. R. Boccaccini, J. Polak, A. E. Bishop, V. Maquet, J. Biomater. Appl. 2006, 21, 109. https://doi.org/10.1177/0885328206057952.
E. Carletti, T. Endogan, N. Hasirci, V. Hasirci, D. Maniglio, A. Motta, C. Migliaresi, J. Tissue Eng. Regen. Med. 2011, 5, 569. https://doi.org/10.1002/term.
K. M. Nampoothiri, N. R. Nair, R. P. John, Bioresour. Technol. 2010, 101, 8493. https://doi.org/10.1016/j.biortech.2010.05.092.
D. Bendix, Polym. Degrad. Stab. 1998, 59, 129. https://doi.org/10.1016/S0141-3910(97)00149-3.
Y. Ramot, M. Haim-Zada, A. J. Domb, A. Nyska, Adv. Drug Deliv. Rev. 2016, 107, 153. https://doi.org/10.1016/j.addr.2016.03.012.
A. Södergard, M. Stolt, Industrial production of high molecular weight poly(lactic acid). in Poly(lactic acid) Synthesis, Structure, Properties, Processing, and Applications (Eds: R. Auras, L.-T. Lim, S. E. M. Selke, H. Tsuji), John Wiley & Sons, Inc., Hoboken, New Jersey 2010, p. 27. https://doi.org/10.1002/9780470649848.ch3.
J.-M. Raquez, R. Ramy-Ratiarison, M. Murariu, P. Dubois, Reactive extrusion of PLA-based materials: from synthesis to reactive melt-blending. in Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications (Eds: A. Jiménez, M. A. Peltzer, R. A. Ruseckaite), Royal Society of Chemistry - Polymer Chemistry Series, Londres 2015, p. 101. https://doi.org/10.1039/9781782624806-00099.
S. Jacobsen, H. G. Fritz, P. Degée, P. Dubois, R. J. Jérôme, Polymer 2000, 41, 3395. https://doi.org/10.1016/S0032-3861(99)00507-8.
J. M. Raquez, P. Degée, Y. Nabar, R. Narayan, P. Dubois, C. R. Chim. 2006, 9, 1370. https://doi.org/10.1016/j.crci.2006.09.004.
S. Jacobsen, H.-G. Fritz, P. Degée, P. Dubois, R. Jérôme, Macromol. Symp. 2000, 273, 261.
A. Gallos, G. Fontaine, S. Bourbigot, Macromol. Mater. Eng. 2013, 298, 1016. https://doi.org/10.1002/mame.201200271.
C. Hopmann, M. Adamy, A. Cohnen, Introduction to reactive extrusion. in Reaction Extrusion (Eds: G. Beyer, C. Hopmann), Wiley-VCH, Weinheim, Allemagne 2017, p. 3. https://doi.org/10.1002/9783527801541.ch1.
N. Régibeau, J. Hurlet, R. G. Tilkin, F. Lombart, B. Heinrichs, C. Grandfils, Mater. Today Commun. 2020, 24, 101208. https://doi.org/10.1016/j.mtcomm.2020.101208.
A. Rapacz-kmita, E. Stodolak-zych, M. Dudek, B. Szaraniek, A. Rozyxka, M. Mosialek, et al., Physicochem. Probl. Miner. Process 2013, 49, 91. https://doi.org/10.5277/ppmp130109.
D. Lahiri, F. Rouzaud, S. Namin, A. Keshri, J. J. Valdés, L. Kos, et al., ACS Appl. Mater. Interfaces 2009, 1, 2470. https://doi.org/10.1021/am900423q.
F. Wu, B. Zhang, W. Yang, Z. Liu, M. Yang, Polymer 2014, 55, 5760. https://doi.org/10.1016/j.polymer.2014.08.070.
H. Lv, S. Song, S. Sun, L. Ren, H. Zhang, Polym. Adv. Technol. 2016, 27, 1156. https://doi.org/10.1002/pat.3777.
S. M. Lai, Y. T. Hsieh, J. Macromol. Sci. Part B Phys. 2016, 55, 211. https://doi.org/10.1080/00222348.2016.1138179.
E. Kontou, M. Niaounakis, P. Georgiopoulos, J. Appl. Polym. Sci. 2011, 122, 1519. https://doi.org/10.1002/app.34234.
T. C. Huang, J. M. Yeh, J. C. Yang, Adv. Mat. Res. 2010, 123–125, 1215. https://doi.org/10.4028/www.scientific.net/amr.123-125.1215.
S. Yan, J. Yin, Y. Yang, Z. Dai, J. Ma, X. Chen, Polymer 2007, 48, 1688. https://doi.org/10.1016/j.polymer.2007.01.037.
Y. Li, C. Han, J. Bian, L. Han, L. Dong, G. Gao, Polym. Compos. 2012, 33, 1719. https://doi.org/10.1002/pc.22306.
Khankrua R, Pivsa-art S, Hiroyuki H. Thermal and Mechanical Properties of Biodegradable polyester / silica Nanocomposites 2013;34:705–13. https://doi.org/10.1016/j.egypro.2013.06.803.
S. Minko, Grafting on solid surfaces:"Grafting to" and “Grafting from” methods. in Polymer Surfaces and Interfaces. Characterization, Modification and Applications, 1st ed. (Ed: M. Stamm), Springer, Berlin 2008, p. 215. https://doi.org/10.1007/978-3-540-73865-7.
Y. Zhang, B. Y. Deng, Q. S. Liu, Plast. Rubber Compos. 2014, 0, 1. https://doi.org/10.1179/1743289814Y.0000000099.
D. Shi, X. Lai, Y. Jiang, C. Yan, Z. Liu, W. Yang, et al., Chinese J. Polym. Sci. 2019, 37, 216. https://doi.org/10.1007/s10118-019-2191-6.
F. Wu, X. Lan, D. Ji, Z. Liu, W. Yang, M. Yang, J. Appl. Polym. Sci. 2013, 129, 3019. https://doi.org/10.1002/app.38585.
N. Régibeau, R. G. Tilkin, C. Grandfils, B. Heinrichs, Mater. Today Commun. 2020, 25, 101610. https://doi.org/10.1016/j.mtcomm.2020.101610.
P. Dubois, P. Degée, R. Jérôme, P. Teyssié, Macromlecules 1992, 25, 2614. https://doi.org/10.1021/ma00036a009.
L. B. Capeletti, I. M. Baibich, I. S. Butler, J. H. Z. Dos Santos, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 133, 619. https://doi.org/10.1016/j.saa.2014.05.072.
R. Anthony, S. T. D. Manickam, P. Kollu, P. V. Chandrasekar, K. Karuppasamy, S. Balakumar, RSC Adv. 2014, 4, 24820. https://doi.org/10.1039/C4RA01960A.
E. Péré, H. Cardy, O. Cairon, M. Simon, S. Lacombe, Vib. Spectrosc. 2001, 25, 163.
J. Osswald, K. T. Fehr, J. Mater. Sci. 2006, 41, 1335. https://doi.org/10.1007/s10853-006-7327-8.
A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P. Orihuela, Appl. Sci. 2017, 7, 1. https://doi.org/10.3390/app7010049.
G. Kister, G. Cassanas, M. Vert, Polymer 1998, 39, 267.
K. Yuniarto, Y. A. Purwanto, S. Purwanto, B. A. Welt, H. K. Purwadaria, T. C. Sunarti, et al., AIP Conf. Proc. 2016, 1725, 1. https://doi.org/10.1063/1.4945555.
A. Prébé, P. Alcouffe, P. Cassagnau, J.-F. Gérard, Mater. Chem. Phys. 2010, 124, 399. https://doi.org/10.1016/j.matchemphys.2010.06.054.
J. T. Yoon, S. C. Lee, Y. G. Jeong, Compos. Sci. Technol. 2010, 70, 776. https://doi.org/10.1016/j.compscitech.2010.01.011.
J. Kim, P. Seidler, L. S. Wan, C. Fill, J. Colloid Interface Sci. 2009, 329, 114. https://doi.org/10.1016/j.jcis.2008.09.031.
D. L. Angst, G. W. Simmons, Langmuir 1991, 7, 2236. https://doi.org/10.1021/la00058a043.
P. H. Mutin, G. Guerrero, A. Vioux, J. Mater. Chem. 2005, 15, 3761. https://doi.org/10.1039/b505422b.
W. He, D. Wu, J. Li, K. Zhang, Y. Xiang, L. Long, S. Qin, J. Yu, Q. Zhang, Bull. Korean Chem. Soc. 2013, 34, 2747. https://doi.org/10.5012/bkcs.2013.34.9.2747.
J. Li, F. Liu, X. Yu, Z. Wu, Y. Wang, RSC Adv. 2016, 6, 42684. https://doi.org/10.1039/C6RA04525A.
J. R. Dorgan, Rheology of poly(lactic acid). in Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Applications (Eds: R. Auras, L.-T. Lim, S. E. M. Selke, H. Tsuji), John Wiley & Sons, Inc., Hoboken, New Jersey 2010, p. 125. https://doi.org/10.1002/9780470649848.ch10.
J. R. Dorgan, J. S. Williams, D. N. Lewis, J. Rheol. 2002, 43, 1141. https://doi.org/10.1122/1.551041.
L. Basilissi, G. Di Silvestro, H. Farina, M. A. Ortenzi, J. Appl. Polym. Sci. 2012, 128, 1575. https://doi.org/10.1002/APP.38324.
B. M. Pilic, T. I. Radusin, I. S. Ristic, C. Silvestre, V. L. Lazic, S. S. Balos, et al., Hem. Ind. Ind. 2016, 70, 73. https://doi.org/10.2298/hemind150107015p.
J. Zou, T. Ma, J. Zhang, W. He, F. Huang, Polym. Bull. 2011, 67, 1261. https://doi.org/10.1007/s00289-011-0485-0.
B. K. Chen, C. C. Shih, A. F. Chen, Compos. Part A Appl. Sci. Manuf. 2012, 43, 2289. https://doi.org/10.1016/j.compositesa.2012.08.007.
M. Z. Rong, M. Q. Zhang, S. L. Pan, K. Friedrich, J. Appl. Polym. Sci. 2004, 92, 1771. https://doi.org/10.1002/app.20139.
A. Ghanbari, T. V. M. Ndoro, F. Leroy, M. Rahimi, M. C. Böhm, F. Müller-Plathe, Macromolecules 2012, 45, 572. https://doi.org/10.1021/ma202044e.
J. Zhao, D. Wu, J. Han, Z. Jin, Appl. Mech. Mater. 2014, 633, 427. https://doi.org/10.4028/www.scientific.net/AMM.633-634.427.
S. Farah, D. G. Anderson, R. Langer, Adv. Drug Deliv. Rev. 2016, 107, 367. https://doi.org/10.1016/j.addr.2016.06.012.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.