Boilan, E.; Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium, CESI, Chaussée de Louvain 290, 5004 Bouge, Belgium
Winant, V.; Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
Dumortier, E.; Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
Elmoualij, Benaïssa ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie
Quatresooz, Pascale ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie
Osiewacz, H. D.; Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
Debacq-Chainiaux, F.; Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
Toussaint, O.; Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
Language :
English
Title :
Role of Prion protein in premature senescence of human fibroblasts
Baker, D.J., Wijshake, T., Tchkonia, T., et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479 (2011), 232–236.
Baker, D.J., Childs, B.G., Durik, M., et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530 (2016), 184–189.
Balamurugan, K., Schaffner, W., Copper homeostasis in eukaryotes: teetering on a tightrope. Biochim. Biophys. Acta 1763 (2006), 737–746.
Bayreuther, K., Rodemann, H.P., Hommel, R., et al. Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc. Natl. Acad. Sci. U. S. A. 85 (1988), 5112–5116.
Bleackley, M.R., Macgillivray, R.T., Transition metal homeostasis: from yeast to human disease. Biometals 24 (2011), 785–809.
Boilan, E., Winant, V., Dumortier, E., et al. Role of p38MAPK and oxidative stress in copper-induced senescence. Age (Dordr) 35 (2013), 2255–2271.
Brown, D.R., Qin, K., Herms, J.W., et al. The cellular prion protein binds copper in vivo. Nature 390 (1997), 684–687.
Campisi, J., d'Adda di Fagagna, F., Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8 (2007), 729–740.
Canello, T., Friedman-Levi, Y., Mizrahi, M., et al. Copper is toxic to PrP-ablated mice and exacerbates disease in a mouse model of E200K genetic prion disease. Neurobiol. Dis. 45 (2012), 1010–1017.
Cazaubon, S., Viegas, P., Couraud, P.O., Functions of prion protein PrPc. Med. Sci. (Paris) 23 (2007), 741–745.
Cristofalo, V.J., Kritchevsky, D., Cell size and nucleic acid content in the diploid human cell line WI-38 during aging. Med. Exp. Int. J. Exp. Med. 19 (1969), 313–320.
Das, A.S., Zou, W.Q., Prions: beyond a single protein. Clin. Microbiol. Rev. 29 (2016), 633–658.
Debacq-Chainiaux, F., Erusalimsky, J.D., Campisi, J., et al. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4 (2009), 1798–1806.
Debacq-Chainiaux, F., Ben Ameur, R., Bauwens, E., et al. Stress-induced (premature) senescence. Rattan, S.I.S., Hayflick, L., (eds.) Cellular Ageing and Replicative Senescence, 2016, Springer International Publishing, 243–262.
Dimri, G.P., Lee, X., Basile, G., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92 (1995), 9363–9367.
Dumont, P., Burton, M., Chen, Q.M., et al. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic. Biol. Med. 28 (2000), 361–373.
d'Adda di Fagagna, F., Reaper, P.M., Clay-Farrace, L., et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426 (2003), 194–198.
Freund, A., Laberge, R.M., Demaria, M., et al. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23 (2012), 2066–2075.
Giannopoulos, P.N., Robertson, C., Jodoin, J., et al. Phosphorylation of prion protein at serine 43 induces prion protein conformational change. J. Neurosci. 29 (2009), 8743–8751.
Goh, A.X., Li, C., Sy, M.S., et al. Altered prion protein glycosylation in the aging mouse brain. J. Neurochem. 100 (2007), 841–854.
Gredilla, R., Grief, J., Osiewacz, H.D., Mitochondrial free radical generation and lifespan control in the fungal aging model Podospora anserina. Exp. Gerontol. 41 (2006), 439–447.
Guichard, C., Ivanyi-Nagy, R., Sharma, K.K., et al. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides. Nucleic Acids Res. 39 (2011), 8544–8558.
Hachiya, N.S., Yamada, M., Watanabe, K., et al. Mitochondrial localization of cellular prion protein (PrPC) invokes neuronal apoptosis in aged transgenic mice overexpressing PrPC. Neurosci. Lett. 374 (2005), 98–103.
Jomova, K., Valko, M., Advances in metal-induced oxidative stress and human disease. Toxicology 283 (2011), 65–87.
Krtolica, A., Campisi, J., Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int. J. Biochem. Cell. Biol. 34 (2002), 1401–1414.
Lawson, V.A., Collins, S.J., Masters, C.L., et al. Prion protein glycosylation. J. Neurochem. 93 (2005), 793–801.
Leclerc, E., Serban, H., Prusiner, S.B., et al. Copper induces conformational changes in the N-terminal part of cell-surface PrPC. Arch. Virol. 151 (2006), 2103–2109.
Lee, Y.J., Baskakov, I.V., Treatment with normal prion protein delays differentiation and helps to maintain high proliferation activity in human embryonic stem cells. J. Neurochem. 114 (2010), 362–373.
Linden, R., Martins, V.R., Prado, M.A., et al. Physiology of the prion protein. Physiol. Rev. 88 (2008), 673–728.
Lopez-Otin, C., Blasco, M.A., Partridge, L., et al. The hallmarks of aging. Cell 153 (2013), 1194–1217.
Mange, A., Crozet, C., Lehmann, S., et al. Scrapie-like prion protein is translocated to the nuclei of infected cells independently of proteasome inhibition and interacts with chromatin. J. Cell Sci. 117 (2004), 2411–2416.
Matos, L., Gouveia, A., Almeida, H., Copper ability to induce premature senescence in human fibroblasts. Age (Dordr) 34 (2012), 783–794.
Mays, C.E., Soto, C., The stress of prion disease. Brain Res. 1648 (2016), 553–560.
Opazo, C., Barria, M.I., Ruiz, F.H., et al. Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16 (2003), 91–98.
Otvos, L. Jr., Cudic, M., Post-translational modifications in prion proteins. Curr. Protein Pept. Sci. 3 (2002), 643–652.
Pan, K.M., Baldwin, M., Nguyen, J., et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. U. S. A. 90 (1993), 10962–10966.
Parkin, E.T., Watt, N.T., Hussain, I., et al. Cellular prion protein regulates beta-secretase cleavage of the Alzheimer's amyloid precursor protein. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 11062–11067.
Petrakis, S., Sklaviadis, T., Identification of proteins with high affinity for refolded and native PrPC. Proteomics 6 (2006), 6476–6484.
Philipp, O., Hamann, A., Servos, J., et al. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina. PLoS One, 8, 2013, e83109.
Prusiner, S.B., Prions. Proc. Natl. Acad. Sci. U. S. A. 95 (1998), 13363–13383.
Qin, K., Zhao, L., Ash, R.D., et al. ATM-mediated transcriptional elevation of prion in response to copper-induced oxidative stress. J. Biol. Chem. 284 (2009), 4582–4593.
Rachidi, W., Riondel, J., McMahon, H.M., et al. Prion protein and copper: a mysterious relationship. Pathol. Biol. (Paris) 53 (2005), 244–250.
Rudd, P.M., Wormald, M.R., Wing, D.R., et al. Prion glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry 40 (2001), 3759–3766.
Sadaie, M., Salama, R., Carroll, T., et al. Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 27 (2013), 1800–1808.
Scheckhuber, C.Q., Osiewacz, H.D., Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol. Genet. Genomics 280 (2008), 365–374.
Scheckhuber, C.Q., Grief, J., Boilan, E., et al. Age-related cellular copper dynamics in the fungal ageing model Podospora anserina and in ageing human fibroblasts. PLoS One, 4, 2009, e4919.
Schefe, J.H., Lehmann, K.E., Buschmann, I.R., et al. Quantitative real-time RT-PCR data analysis: current concepts and the novel gene expression's CT difference formula. J. Mol. Med. 84 (2006), 901–910.
Schmitt-Ulms, G., Legname, G., Baldwin, M.A., et al. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J. Mol. Biol. 314 (2001), 1209–1225.
Servos, J., Hamann, A., Grimm, C., et al. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development. PLoS One, 7, 2012, e49292.
Shah, P.P., Donahue, G., Otte, G.L., et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes. Dev. 27 (2013), 1787–1799.
Soto, C., Prion hypothesis: the end of the controversy?. Trends Biochem. Sci. 36 (2011), 151–158.
Strom, A., Wang, G.S., Picketts, D.J., et al. Cellular prion protein localizes to the nucleus of endocrine and neuronal cells and interacts with structural chromatin components. Eur. J. Cell Biol. 90 (2011), 414–419.
Stumpferl, S.W., Stephan, O., Osiewacz, H.D., Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryot. Cell 3 (2004), 200–211.
Thakur, A.K., Srivastava, A.K., Srinivas, V., et al. Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions. J. Biol. Chem. 286 (2011), 38533–38545.
Tigges, J., Krutmann, J., Fritsche, E., et al. The hallmarks of fibroblast ageing. Mech. Age. Dev. 138 (2014), 26–44.
Toussaint, O., Remacle, J., Dierick, J.F., et al. From the Hayflick mosaic to the mosaics of ageing: role of stress-induced premature senescence in human ageing. Int. J. Biochem. Cell. Biol. 34 (2002), 1415–1429.
Toutfaire, M., Bauwens, E., Debacq-Chainiaux, F., The impact of cellular senescence in skin ageing: a notion of mosaic and therapeutic strategies. Biochem. Pharmacol., 2017.
Varela-Nallar, L., Toledo, E.M., Larrondo, L.F., et al. Induction of cellular prion protein gene expression by copper in neurons. Am. J. Physiol. Cell Physiol. 290 (2006), C271–281.
Viles, J.H., Klewpatinond, M., Nadal, R.C., Copper and the structural biology of the prion protein. Biochem. Soc. Trans. 36 (2008), 1288–1292.
Watt, N.T., Routledge, M.N., Wild, C.P., et al. Cellular prion protein protects against reactive-oxygen-species-induced DNA damage. Free Radic. Biol Med. 43 (2007), 959–967.