Article (Scientific journals)
A classification of polynomial functions satisfying the Jacobi identity over integral domains
Marichal, J.-L.; Mathonet, Pierre
2017In Aequationes Mathematicae, 91 (4), p. 601-618
Peer Reviewed verified by ORBi
 

Files


Full Text
PolynomialFunctionsJacobi.pdf
Author postprint (142.82 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Integral domain; Jacobi’s identity; Polynomial
Abstract :
[en] The Jacobi identity is one of the properties that are used to define the concept of Lie algebra and in this context is closely related to associativity. In this paper we provide a complete description of all bivariate polynomials that satisfy the Jacobi identity over infinite integral domains. Although this description depends on the characteristic of the domain, it turns out that all these polynomials are of degree at most one in each indeterminate.
Disciplines :
Mathematics
Author, co-author :
Marichal, J.-L.;  Mathematics Research Unit, University of Luxembourg, Maison du Nombre, 6, Avenue de la Fonte, Esch-sur-Alzette, Luxembourg
Mathonet, Pierre ;  Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Language :
English
Title :
A classification of polynomial functions satisfying the Jacobi identity over integral domains
Publication date :
August 2017
Journal title :
Aequationes Mathematicae
ISSN :
0001-9054
eISSN :
1420-8903
Publisher :
Birkhauser Verlag AG
Volume :
91
Issue :
4
Pages :
601-618
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Unilu - Université du Luxembourg
Available on ORBi :
since 26 November 2020

Statistics


Number of views
69 (1 by ULiège)
Number of downloads
48 (1 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi