Article (Scientific journals)
Reducibility of n-ary semigroups: from quasitriviality towards idempotency
Couceiro, Miguel; Devillet, Jimmy; Marichal, Jean-Luc et al.
2022In Beiträge zur Algebra und Geometrie
Peer Reviewed verified by ORBi
 

Files


Full Text
ReducibilityNarySemigroups.pdf
Author preprint (312.76 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Semigroup; polyadic semigroup; quasitriviality; idempotency
Abstract :
[en] Let $X$ be a nonempty set. Denote by $\mathcal{F}^n_k$ the class of associative operations $F\colon X^n\to X$ satisfying the condition $F(x_1,\ldots,x_n)\in\{x_1,\ldots,x_n\}$ whenever at least $k$ of the elements $x_1,\ldots,x_n$ are equal to each other. The elements of $\mathcal{F}^n_1$ are said to be quasitrivial and those of $\mathcal{F}^n_n$ are said to be idempotent. We show that $\mathcal{F}^n_1=\cdots =\mathcal{F}^n_{n-2}\subseteq\mathcal{F}^n_{n-1}\subseteq\mathcal{F}^n_n$ and we give conditions on the set $X$ for the last inclusions to be strict. The class $\mathcal{F}^n_1$ was recently characterized by Couceiro and Devillet \cite{CouDev}, who showed that its elements are reducible to binary associative operations. However, some elements of $\mathcal{F}^n_n$ are not reducible. In this paper, we characterize the class $\mathcal{F}^n_{n-1}\setminus\mathcal{F}^n_1$ and show that its elements are reducible. We give a full description of the corresponding reductions and show how each of them is built from a quasitrivial semigroup and an Abelian group whose exponent divides $n-1$.
Disciplines :
Mathematics
Author, co-author :
Couceiro, Miguel;  U NIVERSIT É DE LORRAINE , CNRS, INRIA NANCY G.E., LORIA, F-54000 NANCY, F RANCE > Professeur
Devillet, Jimmy;  Université du Luxembourg
Marichal, Jean-Luc;  Université du Luxembourg - UniLu
Mathonet, Pierre ;  Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Language :
English
Title :
Reducibility of n-ary semigroups: from quasitriviality towards idempotency
Publication date :
2022
Journal title :
Beiträge zur Algebra und Geometrie
ISSN :
0138-4821
eISSN :
2191-0383
Publisher :
Springer, Berlin, Germany
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
Unilu - Université du Luxembourg
ULiège - Université de Liège
Available on ORBi :
since 26 November 2020

Statistics


Number of views
142 (10 by ULiège)
Number of downloads
64 (6 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenCitations
 
1
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi