[en] Let $X$ be a nonempty set. Denote by $\mathcal{F}^n_k$ the class of associative operations $F\colon X^n\to X$ satisfying the condition $F(x_1,\ldots,x_n)\in\{x_1,\ldots,x_n\}$ whenever at least $k$ of the elements $x_1,\ldots,x_n$ are equal to each other. The elements of $\mathcal{F}^n_1$ are said to be quasitrivial and those of $\mathcal{F}^n_n$ are said to be idempotent. We show that $\mathcal{F}^n_1=\cdots =\mathcal{F}^n_{n-2}\subseteq\mathcal{F}^n_{n-1}\subseteq\mathcal{F}^n_n$ and we give conditions on the set $X$ for the last inclusions to be strict. The class $\mathcal{F}^n_1$ was recently characterized by Couceiro and Devillet \cite{CouDev}, who showed that its elements are reducible to binary associative operations. However, some elements of $\mathcal{F}^n_n$ are not reducible. In this paper, we characterize the class $\mathcal{F}^n_{n-1}\setminus\mathcal{F}^n_1$ and show that its elements are reducible. We give a full description of the corresponding reductions and show how each of them is built from a quasitrivial semigroup and an Abelian group whose exponent divides $n-1$.
Disciplines :
Mathematics
Author, co-author :
Couceiro, Miguel; U NIVERSIT É DE LORRAINE , CNRS, INRIA NANCY G.E., LORIA, F-54000 NANCY, F RANCE > Professeur
Devillet, Jimmy; Université du Luxembourg
Marichal, Jean-Luc; Université du Luxembourg - UniLu
Mathonet, Pierre ; Université de Liège - ULiège > Département de mathématique > Géométrie différentielle
Language :
English
Title :
Reducibility of n-ary semigroups: from quasitriviality towards idempotency
Ackerman, N.L.: A characterization of quasitrivial n -semigroups. To appear in Algebra Universalis. http://people.math.harvard.edu/%7enate/papers/ (2020)
Couceiro, M., Devillet, J.: Every quasitrivial n -ary semigroup is reducible to a semigroup. Algebra Universalis 80(4), 19 (2019) DOI: 10.1007/s00012-019-0626-0
Couceiro, M., Devillet, J., Marichal, J.-L.: Quasitrivial semigroups: characterizations and enumerations. Semigr. Forum 98(3), 472–498 (2019) DOI: 10.1007/s00233-018-9928-3
Devillet, J., Kiss, G., Marichal, J.-L.: Characterizations of quasitrivial symmetric nondecreasing associative operations. Semigr. Forum 98(1), 154–171 (2019) DOI: 10.1007/s00233-018-9980-z
Dudek, W.A.: Idempotents in n -ary semigroups. Southeast Asian Bull. Math. 25, 97–104 (2001) DOI: 10.1007/s10012-001-0097-y
Dudek, W.A., Głazek, K.: Around the Hosszu–Głuskin theorem for n -ary groups. Discrete Math. 308, 4861–4876 (2008) DOI: 10.1016/j.disc.2007.09.005
Dudek, W.A., Mukhin, V.V.: On n -ary semigroups with adjoint neutral element. Quasigr. Relat. Syst. 14, 163–168 (2006)
Dörnte, W.: Untersuchungen über einen verallgemeinerten Gruppenbegriff. Math. Z 29, 1–19 (1928) DOI: 10.1007/BF01180515
Kiss, G., Somlai, G.: Associative idempotent nondecreasing functions are reducible. Semigr. Forum 98(1), 140–153 (2019) DOI: 10.1007/s00233-018-9973-y
Lehtonen, E., Starke, F.: On associative operations on commutative integral domains. Semigr. Forum 100, 910–915 (2020) DOI: 10.1007/s00233-019-10044-x
Länger, H.: The free algebra in the variety generated by quasi-trivial semigroups. Semigr. Forum 20(1), 151–156 (1980) DOI: 10.1007/BF02572677
Marichal, J.-L., Mathonet, P.: A description of n -ary semigroups polynomial-derived from integral domains. Semigr. Forum 83, 241–249 (2011) DOI: 10.1007/s00233-011-9295-9