Abercrombie, M. (1946). Estimation of nuclear population from microtome sections. Anatomical Record, 94(2), 239–247. https://doi.org/10.1002/ar.1090940210
Ammer, J. J., Grothe, B., & Felmy, F. (2012). Late postnatal development of intrinsic and synaptic properties promotes fast and precise signaling in the dorsal nucleus of the lateral lemniscus. Journal of Neurophysiology, 107(4), 1172–1185. https://doi.org/10.1152/jn.00585.2011
Barkan, C. L., Kelley, D. B., & Zornik, E. (2018). Premotor neuron divergence reflects vocal evolution. The Journal of Neuroscience, 38, 0089–0018. https://doi.org/10.1523/JNEUROSCI.0089-18.2018
Baron, V. D., Morshnev, K. S., Olshansky, V. M., & Orlov, A. A. (1994). Electric organ discharges of two species of African catfish (Synodontis) during social behaviour. Animal Behaviour, 48, 1472–1475. https://doi.org/10.1006/anbe.1994.1387
Bass, A. H. (1986). Species differences in electric organs of mormyrids: Substrates for species-typical electric organ discharge waveforms. The Journal of Comparative Neurology, 330, 313–330. https://doi.org/10.1002/cne.902440305
Bass, A. H. (1989). The evolution of vertebrate motor systems for acoustic and electric communication: Peripheral and central elements. Brain, Behavior and Evolution, 33, 237–247. https://doi.org/10.1159/000115931
Bass, A. H. (2014). Central pattern generator for vocalization: Is there a vertebrate morphotype? Current Opinion in Neurobiology, 28, 94–100. https://doi.org/10.1016/j.conb.2014.06.012
Bass, A. H., & Baker, R. (1997). Phenotypic specification of hindbrain Rhombomeres and the origins of rhythmic circuits in vertebrates. Brain, Behavior and Evolution, 50(Suppl 1), 3–16. https://doi.org/10.1159/000113351
Bass, A. H., & Baker, R. (1990). Sexual dimorphisms in the vocal control system of a teleost fish: morphology of physiologically identified neurons. Journal of Neurobiology, 21(8), 1155–1168. https://doi.org/10.1002/neu.480210802
Bass, A. H., Denizot, J.-P., & Marchaterre, M. A. (1986). Ultrastructural features and hormone- dependent sex differences of Mormyrid electric organs. Journal of Comparative Neurology, 528, 511–528. https://doi.org/10.1002/cne.902540405
Bass, A. H., & Marchaterre, M. A. (1989). Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): Sexual polymorphisms and general synaptology of sonic motor nucleus. The Journal of Comparative Neurology, 286, 154–169. https://doi.org/10.1002/cne.902860203
Bass, A. H., Marchaterre, M. A., & Baker, R. (1994). Vocal-acoustic pathways in a teleost fish. The Journal of Neuroscience, 14(7), 4025–4039. https://doi.org/10.1016/J.TICS.2017.10.001
Bass, A. H., & Zakon, H. H. (2005). Sonic and electric fish: At the crossroads of neuroethology and behavioral neuroendocrinology. Hormones and Behavior, 48(4), 360–372. https://doi.org/10.1016/j.yhbeh.2005.05.022
Bass, A. H., & Baker, R. (1991). Evolution of homologous vocal control traits. Brain, Behavior and Evolution, 38, 240–254.
Bennett, M. V. (1971). Electric organs. In W. Hoar & D. Randall (Eds.), Fish physiology (Vol. 5, pp. 347–491). London: Academic Press.
Bennett, M. V., Nakajima, Y., & Pappas, G. D. (1967). Physiology and ultrastructure of electrotonic junctions. 3. Giant electromotor neurons of Malapterurus electricus. Journal of Neurophysiology, 30, 209–235. https://doi.org/10.1152/jn.1967.30.2.161
Bennett, M. V., Pappas, G. D., Aljure, E., & Nakajima, Y. (1967). Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. Journal of Neurophysiology, 30(2), 180–208. https://doi.org/10.1152/jn.1967.30.2.180
Bennett, M. V., Pappas, G. D., Giménez, M., & Nakajima, Y. (1967). Physiology and ultrastructure of electrotonic junctions. IV. Medullary Electromotor Nuclei in Gymnotid Fish. Journal of Neurophysiology, 30, 236–300. https://doi.org/10.1152/jn.1967.30.2.236
Boyle, K. S., Colleye, O., & Parmentier, E. (2014). Sound production to electric discharge: Sonic muscle evolution in progress in Synodontis spp. catfishes (Mochokidae). Proceedings of the Royal Society Biological Sciences Series B, 281, 1–9. https://doi.org/10.1098/rspb.2014.1197
Calin-Jageman, R. J., & Cumming, G. (2019). Estimation for better inference in neuroscience. Eneuro, 6(4), 1–11. https://doi.org/10.1523/eneuro.0205-19.2019
Caputi, A. A., Carlson, B. A., & Macadar, O. (2005). Electric organs and their control. In T. H. Bullock, C. D. Hopkins, A. N. Popper, & R. R. Fay (Eds.), Electroreception (pp. 410–445). New-York (U.S.A): Springer.
Carlson, B. A. (2006). A neuroethology of electrocommunication. In L. Friedrich, S. P. Colin, P. Moller, & B. G. Kapoor (Eds.), Communication in fishes (pp. 805–848). Enfield (NH), USA: Science Publishers.
Chagnaud, B. P., & Bass, A. H. (2014). Vocal behavior and vocal central pattern generator organization diverge among toadfishes. Brain, Behavior and Evolution, 7(1), 51–65. https://doi.org/10.1159/000362916
Chagnaud, B. P., Zee, M. C., Baker, R., & Bass, A. H. (2012). Innovations in motoneuron synchrony drive rapid temporal modulations in vertebrate acoustic signaling. Journal of Neurophysiology (Bethesda), 107(12), 3528–3542. https://doi.org/10.1152/jn.00030.2012
Chagnaud, B. P., Baker, R., & Bass, A. H. (2011). Vocalization frequency and duration are coded in separate hindbrain nuclei. Nature Communications, 2(346), 1492–1501. https://doi.org/10.1016/j.str.2010.08.012.Structure
Connaughton, M. a. (2004). Sound generation in searobin (Prionotus carolinus), a fish with alternate sonic muscle contraction. Journal of Experimental Biology, 207(Pt 10), 1643–1654. https://doi.org/10.1242/jeb.00928
Crampton, W. G. R. (2006). Evolution of Elecric signal diversity in gymnotiform fishes. Part B. Signal design. In L. Friedrich, S. P. Collin, P. Moller, & B. G. Kapoor (Eds.), Communication in fishes (pp. 697–731). Enfield (NH), USA: Science Publisher.
Elekes, K., & Szabo, T. (1985). Synaptology of the meduallry command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Experimental Brain Research, 60, 509–520. https://doi.org/10.1016/0306-4522(81)90137-8
Fawcett, D. W., & Revel, J. P. (1961). The sarcoplasmic reticulum of a fast-acting fish muscle. Journal of Biophysical and Biochemical Cytology, 10, 89–109. https://doi.org/10.1083/jcb.10.4.89
Feher, J. J., Waybright, T. D., & Fine, M. L. (1998). Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle. Journal of Muscle Research and Cell Motility, 19(6), 661–674. https://doi.org/10.1023/A:1005333215172
Hagedorn, M., Womble, M., & Finger, T. E. (1990). Synodontid catfish: A new group of weakly electric fish. Brain, Behavior and Evolution, 35, 268–277.
Ho, J., Tumkaya, T., Aryal, S., Choi, H., & Claridge-Chang, A. (2019). Moving beyond P values: Everyday data analysis with estimation plots. Nature Methods, 16, 565–566.
Hoke, K. L., Adkins-Regan, E., Bass, A. H., McCune, A. R., & Wolfner, M. F. (2019). Co-opting evo-devo concepts for new insights into mechanisms of behavioural diversity. The Journal of Experimental Biology, 222(8), jeb190058. https://doi.org/10.1242/jeb.190058
Janetzko, A., Zimmermann, H., & Volknandt, W. (1987). The electromotor system of the electric catfish (Malapterurus electricus): A fine-structural analysis. Cell and Tissue Research, 247, 613–624.
Katz, P. S. (2016). Evolution of central pattern generators and rhythmic behaviours. Philosophical Transactions of the Royal Society of London, 371, 20150057. https://doi.org/10.1098/rstb.2015.0057
Katz, P. S., & Harris-Warrick, R. M. (1999). The evolution of neuronal circuits underlying species-specific behavior. Current Opinion in Neurobiology, 9(5), 628–633. https://doi.org/10.1016/S0959-4388(99)00012-4
Kéver, L., Boyle, K. S., Dragičević, B., Dulčić, J., & Parmentier, E. (2014). A superfast muscle in the complex sonic apparatus of Ophidion rochei (Ophidiiformes): Histological and physiological approaches. Journal of Experimental Biology, 217, 3432–3440. https://doi.org/10.1242/jeb.105445
Kiehn, O. (2016). Decoding the organization of spinal circuits that control locomotion. Nature Reviews Neuroscience, 17(4), 224–238. https://doi.org/10.1038/nrn.2016.9
Kwong-Brown, U., Tobias, M. L., Elias, D. O., Hall, I. C., Elemans, C. P. H., & Kelley, D. B. (2019). The return to water in ancestral Xenopus was accompanied by a novel mechanism for producing and shaping vocal signals. ELife, 8(e39946), 1–15. https://doi.org/10.7554/eLife.39946
Ladich, F., & Bass, A. H. (1996). Sonic/vocal-acousticolateralis pathways in teleost fishes: A transneuronal biocytin study in mochokid catfish. Journal of Comparative Neurology, 374(4), 493–505. https://doi.org/10.1002/(SICI)1096-9861(19961028)374:4<493::AID-CNE2>3.0.CO;2-X
Millot, S., & Parmentier, E. (2014). Development of the ultrastructure of sonic muscles: A kind of neoteny? BMC Evolutionary Biology, 14(24), 1–9. https://doi.org/10.1186/1471-2148-14-24
Orlov, A. A., & Baron, V. D. (2005). Responses of the Electrogeneration system of Synodontis (Mochokidae, Siluriformes) to weak electric fields. Doklady Biological Sciences, 403(February), 284–287. https://doi.org/10.1007/s10630-005-0113-y
Orlov, A. A., Baron, V. D., & Golubtsov, A. S. (2015). Electric discharges of two African catfishes of the genus Auchenoglanis (Claroteidae, Siluriformes). Dokladi Biological Sciences, 462(1), 138–140. https://doi.org/10.1134/S0012496615030059
Orlov, A. A., Baron, V. D., & Golubtsov, A. S. (2017). Electric discharges and electrogenesis peculiarity in two African upside-down catfishes, Synodontis caudovittatus and S. Eupterus (Mochokidae, Siluriformes). Doklady Biological Sciences, 474(5), 649–651. https://doi.org/10.1134/S0012496617030097
Pappas, G. D., & Bennett, M. V. L. (1966). Specialized junctions involved in electrical transmission between neurons. Annals of the New York Academy of Sciences, 137(2), 495–508. https://doi.org/10.1111/j.1749-6632.1966.tb50177.x
Parmentier, E., & Diogo, R. (2006). Evolutionary trends of swimbladder sound mechanisms in some teleost fishes. In F. Ladich, S. P. Collin, P. Moller, & B. G. Kapoor (Eds.), Communication in fishes (Vol. 1, pp. 45–70). Enfield (NH), USA: Science Publisher.
Parmentier, E., Fabri, G., Kaatz, I. M., Decloux, N., Planes, S., & Vandewalle, P. (2010). Functional study of the pectoral spine stridulation mechanism in different mochokid catfishes. Journal of Experimental Biology, 213(Pt 7), 1107–1114. https://doi.org/10.1242/jeb.039461
Prinz, A. A., Bucher, D., & Marder, E. (2004). Similar network activity from disparate circuit parameters. Nature Neuroscience, 7(12), 1345–1352. https://doi.org/10.1038/nn1352
Rome, L. C., & Lindstedt, S. L. (1998). The quest for speed: Muscles built for high-frequency contractions. News in Physiological Sciences, 13, 261–268. https://doi.org/10.1152/physiologyonline.1998.13.6.261
Rome, L. C., Syme, D. A., Hollingworth, S., Lindstedt, S. L., & Baylor, S. M. (1996). The whistle and rattle: The design of sound producing muscles. Proceedings of the National Academy of Sciences, 93(July), 8095–8100. https://doi.org/10.1073/pnas.93.15.8095
Schwartz, I. R., Pappas, G. D., & Bennett, M. V. L. (1975). The fine structure of electrocytes in weakly electric teleosts. Journal of Neurocytology, 4, 87–114. https://doi.org/10.1007/BF01099098
Song, J., Ampatzis, K., Björnfors, E. R., & El Manira, A. (2016). Motor neurons control locomotor circuit function retrogradely via gap junctions. Nature, 529(7586), 399–402. https://doi.org/10.1038/nature16497
Unguez, G. A., & Zakon, H. H. (1998). Reexpression of myogenic proteins in mature electric organ after removal of neural input. The Journal of Neuroscience, 18(23), 9924–9935. https://doi.org/10.1523/JNEUROSCI.18-23-09924
Viana, F., Gibbs, L., & Berger, A. J. (1990). Double- and triple-labeling of functionally characterized central neurons projecting to peripheral targets studied in vitro. Neuroscience, 38(3), 829–841. https://doi.org/10.1016/0306-4522(90)90075-F
Yamaguchi, A., Kaczmarek, L. K., & Kelley, D. B. (2003). Functional specialization of male and female vocal Motoneurons. The Journal of Neuroscience, 23(37), 11568–11576. https://doi.org/10.1523/JNEUROSCI.23-37-11568.2003
Zakon, H. H., Zwickl, D. J., Lu, Y., & Hillis, D. M. (2008). Molecular evolution of communication signals in electric fish. Journal of Experimental Biology, 211(11), 1814–1818. https://doi.org/10.1242/jeb.015982