2020 • In Desmet, Wim; Pluymers, Bert; Moens, Davidet al. (Eds.) Proceedings of ISMA 2020 - International Conference on Noise and Vibration Engineering and USD 2020 - International Conference on Uncertainty in Structural Dynamics
passive control; periodic structure; piezoelectric shunt; analog network
Abstract :
[en] This work proposes a method to synthesize an electrical network which, when coupled to a complex periodic or nearly-periodic structure through an array of piezoelectric transducers, provides multimodal vibration mitigation. The structure is decomposed into multiple substructures and a reduced-order model is built for each of them. From these models, it is possible to synthesize a network with simple algebraic transformations. The link between these transformations and electromechanical modal coupling is derived, and conditions are given in order to guarantee the passivity of the electrical network. The proposed approach is illustrated on a bladed rail, for which damping of one or multiple families of blade modes is demonstrated.
Raze, Ghislain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Dietrich, Jennifer ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Paknejad, Ahmad; Université Libre de Bruxelles - ULB > Department of Bio-, Electro- and Mechanical Systems > Precision Mechatronics Laboratory
Lossouarn, Boris; Conservatoire national des arts et métiers > Laboratoire de Mécanique des Structures et des Systèmes Couplés
Zhao, Guoying; Université Libre de Bruxelles - ULB > Department of Bio-, Electro- and Mechanical Systems > Precision Mechatronics Laboratory
Deraemaeker, Arnaud; Université Libre de Bruxelles - ULB > Department of Building Architecture and Town Planning
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace struct. and adv. mecha. systems
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
Passive control of a periodic structure using a network of periodically-coupled piezoelectric shunt circuits
Publication date :
October 2020
Event name :
ISMA 2020 - 29th international conference on Noise and Vibration Engineering
Event organizer :
KU Leuven
Event place :
Leuven, Belgium
Event date :
from 07-09-2020 to 09-09-2020
Audience :
International
Main work title :
Proceedings of ISMA 2020 - International Conference on Noise and Vibration Engineering and USD 2020 - International Conference on Uncertainty in Structural Dynamics
N. Hagood and A. von Flotow, “Damping of structural vibrations with piezoelectric materials and passive electrical networks,” Journal of Sound and Vibration, vol. 146, no. 2, pp. 243-268, apr 1991. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/0022460X91907629
B. Mokrani and A. Preumont, “A numerical and experimental investigation on passive piezoelectric shunt damping of mistuned blisks,” Journal of Intelligent Material Systems and Structures, vol. 29, no. 4, pp. 610-622, 2018. [Online]. Available: https://doi.org/10.1177/1045389X17721023
S. Alessandroni, F. Dell'Isola, and M. Porfiri, “A revival of electric analogs for vibrating mechanical systems aimed to their efficient control by PZT actuators,” International Journal of Solids and Structures, vol. 39, no. 20, pp. 5295-5324, oct 2002. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S002076830200402X
B. Lossouarn, J.-F. Deü, M. Aucejo, and K. A. Cunefare, “Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network,” Smart Materials and Structures, vol. 25, no. 11, p. 115042, nov 2016. [Online]. Available: http://stacks.iop.org/0964-1726/25/i=11/a=115042?key=crossref.336b6c7b8578169e34455e93e5f8b4b8
R. Darleux, B. Lossouarn, and J.-F. Deü, “Broadband vibration damping of non-periodic plates by piezoelectric coupling to their electrical analogues,” Smart Materials and Structures, vol. 29, no. 5, p. 054001, may 2020. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-665X/ab7948
J. Tang and K. W. Wang, “Vibration Control of Rotationally Periodic Structures Using Passive Piezoelectric Shunt Networks and Active Compensation,” Journal of Vibration and Acoustics, vol. 121, no. 3, pp. 379-390, jul 1999. [Online]. Available: https://asmedigitalcollection.asme.org/vibrationacoustics/article/121/3/379/441607/Vibration-Control-of-Rotationally-Periodic
J. Liu, L. Li, P. Deng, and C. Li, “A Comparative Study on the Dynamic Characteristics of Bladed Disks With Piezoelectric Network and Piezoelectric Shunt Circuit,” in Volume 7A: Structures and Dynamics, vol. 7A-2016, no. March. American Society of Mechanical Engineers, jun 2016. [Online]. Available: https://asmedigitalcollection.asme.org/GT/proceedings/GT2016/49835/Seoul,SouthKorea/238633
V. Piefort, “Finite Element Modelling of Piezoelectric Active Structures,” Ph.D. dissertation, Université Libre de Bruxelles, 2001. [Online]. Available: https://scmero.ulb.ac.be/Publications/Thesis/Piefort01.pdf
O. Thomas, J.-F. Deü, and J. Ducarne, “Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients,” International Journal for Numerical Methods in Engineering, vol. 80, no. 2, pp. 235-268, oct 2009. [Online]. Available: http://doi.wiley.com/10.1002/nme.2632
I. Giorgio, A. Culla, and D. Del Vescovo, “Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network,” Archive of Applied Mechanics, vol. 79, no. 9, pp. 859-879, sep 2009. [Online]. Available: http://link.springer.com/10.1007/s00419-008-0258-x
K. Yamada, H. Matsuhisa, H. Utsuno, and K. Sawada, “Optimum tuning of series and parallel LR circuits for passive vibration suppression using piezoelectric elements,” Journal of Sound and Vibration, vol. 329, no. 24, pp. 5036-5057, nov 2010. [Online]. Available: http://dx.doi.org/10.1016/j.jsv.2010.06.021
R. R. Craig and M. C. C. Bampton, “Coupling of substructures for dynamic analyses.” AIAA Journal, vol. 6, no. 7, pp. 1313-1319, jul 1968. [Online]. Available: https://arc.aiaa.org/doi/10.2514/3.4741
M. Géradin and D. J. Rixen, Mechanical vibrations: theory and application to structural dynamics. John Wiley & Sons, 2014.
M. P. Castanier, Y.-C. Tan, and C. Pierre, “Characteristic Constraint Modes for Component Mode Synthesis,” AIAA Journal, vol. 39, no. 6, pp. 1182-1187, jun 2001. [Online]. Available: https://arc.aiaa.org/doi/10.2514/2.1433
A. Bloch, “Electromechanical analogies and their use for the analysis of mechanical and electromechanical systems,” Journal of the Institution of Electrical Engineers - Part I: General, vol. 92, no. 52, pp. 157-169, apr 1945. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/ji-1.1945.0039
J. Gannett and L. Chua, “Frequency Domain Passivity Conditions for Linear Time-Invariant Lumped Networks,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/ERL M78/21, May 1978. [Online]. Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/1978/28925.html
J. Ding and A. Zhou, “Eigenvalues of rank-one updated matrices with some applications,” Applied Mathematics Letters, vol. 20, no. 12, pp. 1223-1226, dec 2007. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0893965907000614