[en] Test-day (TD) milk yield records of first-lactation Holstein cows in Luxembourg and Tunisia were analyzed using within-and between-country random regression TD models. Edited data used for within-country analysis included 661,453 and 281,913 TD records in Luxembourg and Tunisia, respectively. The joint data included 730,810 TD records of 87,734 cows and 231 common sires. Both data sets covered calving years 1995 to 2006. Fourth-order Legendre polynomials for random effects and a Gibbs sampling method were used to estimate variance components of lactation curve parameters in separate and joint analyses. Genetic variances of the first 3 coefficients from Luxembourg data were 46 to 69% larger than corresponding estimates from the Tunisian data. Inversely, the Tunisian permanent environment variances for the same coefficients were 52 to 65% larger than the Luxembourg ones. Posterior mean heritabilities of 305-d milk yield and persistency, defined as estimated breeding values (EBV) at 280 days in milk-EBV at 80 days in milk, from between-country analysis were 0.42 and 0.12 and 0.19 and 0.08 in Luxembourg and Tunisia, respectively. Heritability estimates for the same traits from within-country analyses, mainly from the Tunisian data, were lower than those from the joint analysis. Genetic correlations for 305-d milk yield and persistency between countries were 0.60 and 0.36. Product moment and rank correlations between EBV of common sires for 305-d milk yield and persistency from within-country analyses were 0.38 and 0.41 and 0.27 and 0.26, respectively. Differences between genetic variances found in both countries reflect different milk production levels. Moreover, low genetic and rank correlations suggest different ranking of sires in the 2 environments, which implies the existence of a genotype x environment interaction for milk yield in Holsteins.
Banos, G., and C. Smith. 1991. Selecting bulls across countries to maximize genetic improvement in dairy cattle. J. Anim. Breed. Genet. 108:174-181.
Beerda, B., W. Ouweltjes, L. B. J. Sebek, J. J. Windig, and R. F. Veerkamp. 2007. Effects of genotype by environment interactions on milk yield, energy balance, and protein balance. J. Dairy Sci. 90:219-228.
Ben Gara, A., B. Rekik, and M. Bouallègue. 2006. Genetic parameters and evaluation of the Tunisian dairy cattle population for milk yield by Bayesian and BLUP analyses. Livest. Prod. Sci. 100:142-149.
Calus, M. P. L., A. F. Groen, and G. de Jong. 2002. Genotype x environment interaction for protein yield in Dutch dairy cattle as quantified by different models. J. Dairy Sci. 85:3115-3123.
Carabaño, M. J., L. D. Van Vleck, and G. R. Wiggans. 1989. Estimation of genetic parameters for milk and fat yields of dairy cattle in Spain and the United States. J. Dairy Sci. 72:3013-3022.
Cienfuegos-Rivas, E. G., P. A. Oltenacu, R. W. Blake, S. J. Schwager, H. Castillo-Juarez, and F. J. Ruiz. 1999. Interaction between milk yield of Holstein cows in Mexico and the United States. J. Dairy Sci. 82:2218-2223.
Costa, C. N., R. W. Blake, E. J. Pollak, P. A. Oltenacu, R. L. Quaas, and S. R. Searle. 2000. Genetic analysis of Holstein cattle populations in Brazil and the United States. J. Dairy Sci. 83:2963-2974.
Druet, T., F. Jaffrézic, and V. Ducrocq. 2005. Estimation of genetic parameters for test-day records of dairy traits in the first three lactations. Genet. Sel. Evol. 37:257-271.
Fahey, A. G., M. M. Schutz, D. L. Lofgren, A. P. Schinckel, and T. S. Stewart. 2007. Genotype by environment interaction for production traits while accounting for heteroscedasticity. J. Dairy Sci. 90:3889-3899.
Freemeteo. 2007. Average (1961-1990). http://www.freemeteo.com. Accessed Dec. 21, 2007.
Gengler, N. 1996. Persistency of lactation yields: A review. Interbull Bull. 12:97-102.
Gengler, N., G. R. Wiggans, and A. Gillon. 2005. Adjustment for heterogeneous covariance due to herd milk yield by transformation of test-day random regressions. J. Dairy Sci. 88:2981-2990.
Hammami, H., C. Croquet, J. Stoll, B. Rekik, and N. Gengler. 2007. Genetic diversity and joint-pedigree analysis of two importing Holstein populations. J. Dairy Sci. 90:3530-3541.
Hammami, H., B. Rekik, H. Soyeurt, A. Ben Gara, and N. Gengler. 2008. Genetic parameters of Tunisian Holsteins using a test-day random regression model. J. Dairy Sci. 91:2118-2126.
Jamrozik, J., G. Jansen, L. R. Schaeffer, and Z. Liu. 1998. Analysis of persistency of lactation calculated from a random regression test day model. Interbull Bull. 16:43-47.
Jamrozik, J., L. R. Schaeffer, and K. A. Weigel. 2002. Estimates of genetic parameters for single- and multiple-country test-day models. J. Dairy Sci. 85:3131-3141.
Miglior, F., B. L. Muir, and B. J. Van Doormaal. 2005. Selection indices in Holstein cattle of various countries. J. Dairy Sci. 88:1255-1263.
Misztal, I., S. Tsuruta, T. Strabel, B. Auvray, T. Druet, and D. H. Lee. 2002. BLUPF90 and related programs (BGF90). Proc. 7th World Congr. Genet. Appl. Livest. Prod., Montpellier, France. CD-ROM Commun. 28:07.
Mulder, H. A., A. F. Groen, G. de Jong, and P. Bijma. 2004. Genotype by environment interaction for yield and somatic cell score with automatic and conventional milking systems. J. Dairy Sci. 87:1487-1495.
Ojango, J. M. K., and G. E. Pollott. 2002. The relationship between Holstein bull breeding values for milk yield derived in both the UK and Kenya. Livest. Prod. Sci. 74:1-12.
Payne, W. J. A., and J. Hodges. 1997. Tropical Cattle. Origin, Breeds and Breeding Policies. Blackwell Science, Boston, MA.
Peterson, R. 1988. Comparison of Canadian and New Zealand sires in New Zealand for production, weight, and conformation traits. Research bulletin no. 5. Livestock Improvement Corporation. Hamilton, New Zealand.
Pool, M. H., L. L. G. Janss, and T. H. E. Meuwissen. 2000. Genetic parameters of Legendre polynomials for first-parity lactation curves. J. Dairy Sci. 83:2640-2649.
Raffrenato, E., R. W. Blake, P. A. Oltenacu, J. Carvalheiro, and G. Licitra. 2003. Genotype by environment interaction for yield and somatic cell score with alternative environmental definitions. J. Dairy Sci. 86:2470-2479.
Ravagnolo, O., I. Misztal, and G. Hoogenboom. 2000. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci. 83:2120-2125.
Robertson, A. 1959. The sampling variance of the genetic correlation coefficient. Biometrics 15:469-485.
SAS Institute. 2002. SAS User's Guide. Statistics. Version 9.1.3 Edition. SAS Institute Inc., Gary, NC.
Stanton, T. L., R. W. Blake, R. L. Quaas, L. D. Van Vleck, and M. J. Carabano. 1991. Genotype by environment interaction for Holstein milk yield in Colombia, Mexico, and Puerto Rico. J. Dairy Sci. 74:1700-1714.
Veerkamp, R. F., and M. E. Goddard. 1998. Covariance functions across herd production levels for test day records on milk, fat, and protein yields. J. Dairy Sci. 81:1690-1701.
Veerkamp, R. F., G. Simm, and J. D. Oldham. 1995. Genotype by environment interactions: Experience from Langhill. In Breeding and Feeding the High Genetic Merit Dairy Cow. Br. Soc. Anim. Sci. Occas. Publ. 19:59-66.
Weigel, K. A., R. Rekaya, N. R. Zwald, and W. F. Fikse. 2001. International genetic evaluation of dairy sires using a multiple-trait model with individual animal performance records. J. Dairy Sci. 84:2789-2795.
Zwald, N. R., K. A. Weigel, W. F. Fikse, and R. Rekaya. 2001. Characterization of dairy production systems in countries that participate in the international bull evaluation service. J. Dairy Sci. 84:2530-2534.
Zwald, N. R., K. A. Weigel, W. F. Fikse, and R. Rekaya. 2003. Application of a multiple-trait herd cluster model for genetic evaluation of dairy sires from seventeen countries. J. Dairy Sci. 86:376-382.