[en] Abstract Eleven transient bright flashes were detected in Jupiter's atmosphere using the ultraviolet spectrograph instrument on the Juno spacecraft. These bright flashes are only observed in a single spin of the spacecraft and their brightness decays exponentially with time, with a duration of ∼1.4 ms. The spectra are dominated by H2 Lyman band emission and based on the level of atmospheric absorption, we estimate a source altitude of 260 km above the 1-bar level. Based on these characteristics, we suggest that these are observations of transient luminous events (TLEs) in Jupiter's upper atmosphere. In particular, we suggest that these are elves, sprites or sprite halos, three types of TLEs that occur in the Earth's upper atmosphere in response to tropospheric lightning strikes. This is supported by visible light imaging, which shows cloud features typical of lightning source regions at the locations of several of the bright flashes. TLEs have previously only been observed on Earth, although theoretical and experimental work has predicted that they should also be present on Jupiter.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Giles, Rohini S.
Greathouse, Thomas K.
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gladstone, G. Randall
Kammer, Joshua A.
Hue, Vincent
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Baines, K. H., Simon-Miller, A. A., Orton, G. S., Weaver, H. A., Lunsford, A., Momary, T. W., et al. (2007). Polar lightning and decadal-scale cloud variability on Jupiter. Science, 318(5848), 226–229.
Becker, H. N., Alexander, J. W., Atreya, S. K., Bolton, S. J., Brennan, M. J., Brown, S. T., et al. (2020). Small lightning flashes from shallow electrical storms on Jupiter. Nature, 584, 55.
Benilan, Y., Smith, N., Jolly, A., & Raulin, F. (2000). The long wavelength range temperature variations of the mid-UV acetylene absorption coefficient. Planetary and Space Science, 48(5), 463–471.
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno Mission. Space Science Reviews, 213, (1–4), 5–37.
Bonfond, B., Gladstone, G., Grodent, D., Gerard, J.-C., Greathouse, T., Hue, V., et al. (2018). Bar code events in the Juno-UVS data: Signature 10 MeV electron microbursts at Jupiter. Geophysical Research Letters, 45(22), 12–108.
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., et al. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 44(10), 4463–4471.
Borucki, W. J., & Magalhaes, J. A. (1992). Analysis of Voyager 2 images of jovian lightning. Icarus, 96(1), 1–14.
Borucki, W. J., & Williams, M. A. (1986). Lightning in the jovian water cloud. Journal of Geophysical Research, 91(D9), 9893–9903.
Brown, S., Janssen, M., Adumitroaie, V., Atreya, S., Bolton, S., Gulkis, S., et al. (2018). Prevalent lightning sferics at 600 megahertz near Jupiter's poles. Nature, 558(7708), 87–90.
Caplinger, M. (2014). JUNO-J-JUNOCAM-2-EDR-L0-V1.0. NASA Planetary Data System.
Chen, F., & Wu, C. R. (2004). Temperature-dependent photoabsorption cross sections in the VUV-UV region. I. methane and ethane. Journal of Quantitative Spectroscopy and Radiative Transfer, 85(2), 195–209.
Chern, J. L., Hsu, R.-R., Su, H.-T., Mende, S. B., Fukunishi, H., Takahashi, Y., & Lee, L.-C. (2003). Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite. Journal of Atmospheric and Solar-Terrestrial Physics, 65(5), 647–659.
Cook, A. F., Duxbury, T. C., & Hunt, G. E. (1979). First results on jovian lightning. Nature, 280(5725), 794.
Dubrovin, D., Luque, A., Gordillo-Vazquez, F. J., Yair, Y., Parra-Rojas, F. C., Ebert, U., & Price, C. (2014). Impact of lightning on the lower ionosphere of Saturn and possible generation of halos and sprites. Icarus, 24-1, 313–328.
Dubrovin, D., Nijdam, S., van Veldhuizen, E. M., Ebert, U., Yair, Y., & Price, C. (2010). Sprite discharges on Venus and Jupiter-like planets: A laboratory investigation. Journal of Geophysical Research: Space Physics, 115(A6).
Dyudina, U. A., Del Genio, A. D., Ingersoll, A. P., Porco, C. C., West, R. A., Vasavada, A. R., & Barbara, J. M. (2004). Lightning on Jupiter observed in the Ha line by the Cassini imaging science subsystem. Icarus, 172(1), 24–36.
Dyudina, U. A., Ingersoll, A. P., Ewald, S. P., Porco, C. C., Fischer, G., Kurth, W. S., & West, R. A. (2010). Detection of visible lightning on Saturn. Geophysical Research Letters, 37(9).
Franz, R. C., Nemzek, R. J., & Winckler, J. R. (1990). Television image of a large upward electrical discharge above a thunderstorm system. Science, 249(4964), 48–51.
Gerard, J.-C., Bonfond, B., Mauk, B. H., Gladstone, G. R., Yao, Z. H., Greathouse, T. K., et al. (2019). Contemporaneous observations of Jovian energetic auroral electrons and ultraviolet emissions by the Juno spacecraft. Journal of Geophysical Research: Space Physics, 124(11), 8298–8317.
Gierasch, P. J., Ingersoll, A. P., Banfield, D., Ewald, S. P., Helfenstein, P., SimonMiller, A., et al. (2000). Observation of moist convection in Jupiter's atmosphere. Nature, 403(6770), 628–630.
Giles, R. (2020). Possible transient luminous events observed in Jupiter's upper atmosphere. Mendeley Data, V2. https://doi.org/10.17632/7bnpfb623x.2
Gladstone, G. R., Greathouse, T. K., Versteeg, M. H., Hue, V., Kammer, J. A., Davis, M. W., et al. (2019). Recent Juno-UVS observations of Jupiter's auroras. In EPSC/DPS Joint Meeting Abstracts (Vol. 13). Retrieved from https://meetingorganizer.copernicus.org/EPSC-DPS2019/EPSC-DPS2019-794-1.pdf
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA's Juno mission. Space Science Reviews, 213(1–4), 447–473.
Gladstone, G. R., Versteeg, M. H., Greathouse, T. K., Hue, V., Davis, M. W., Gerard, J.-C., et al. (2017). Juno-UVS approach observations of Jupiter's auroras. Geophysical Research Letters, 44(15), 7668–7675.
Gordillo-Vazquez, F. J., Luque, A., & Simek, M. (2011). Spectrum of sprite halos. Journal of Geophysical Research, 116(A9).
Gordillo-Vazquez, F. J., Passas, M., Luque, A., Sánchez, J., Van der Velde, O. A., & Montanyá, J. (2018). High spectral resolution spectroscopy of sprites: A natural probe of the mesosphere. Journal of Geophysical Research: Atmospheres, 123(4), 2336–2346.
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2013). Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS). In Uv, x- ray, and gamma-ray space instrumentation for astronomy xviii (Vol. 8859, p. 88590T). https://doi.org/10.1117/12.2024537
Gurnett, D. A., Shaw, R. R., Anderson, R. R., Kurth, W. S., & Scarf, F. L. (1979). Whistlers observed by Voyager 1: Detection of lightning on Jupiter. Geophysical Research Letters, 6(6), 511–514.
Gustin, J., Feldman, P. D., Gerard, J.-C., Grodent, D., Vidal-Madjar, A., Jaffel, L. B., et al. (2004). Jovian auroral spectroscopy with FUSE: Analysis of self-absorption and implications for electron precipitation. Icarus, 171(2), 336–355.
Hansen, C. J., Caplinger, M. A., Ingersoll, A., Ravine, M. A., Jensen, E., Bolton, S., & Orton, G. (2017). Junocam: Juno's outreach camera. Space Science Reviews, 213(1–4), 475–506.
Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., et al. (2019). In-flight characterization and calibration of the Juno-ultraviolet spectrograph (Juno-UVS). The Astronomical Journal, 157(2), 90.
Hue, V., Greathouse, T., Bonfond, B., Saur, J., Gladstone, G., Roth, L., et al. (2019). Juno-UVS observation of the Io footprint during solar eclipse. Journal of Geophysical Research: Space Physics, 124(7), 5184–5199.
Imai, M., Santolík, O., Brown, S. T., Kolmasova, I., Kurth, W. S., Janssen, M. A., et al. (2018). Jupiter lightning-induced whistler and sferic events with Waves and MWR during Juno perijoves. Geophysical Research Letters, 45(15), 7268–7276.
Imai, M., Wong, M. H., Kolmasova, I., Brown, S. T., Santolík, O., Kurth, W. S., et al. (2020). High-spatiotemporal resolution observations of Jupiter lightning-induced radio pulses associated with sferics and thunderstorms. Geophysical Research Letters, 47(15), e2020GL088397.
Kammer, J. A., Hue, V., Greathouse, T. K., Gladstone, G. R., Davis, M. W., & Versteeg, M. H. (2018). Planning operations in Jupiter's high-radiation environment: Optimization strategies from Juno-UVS. In Space telescopes and instrumentation 2018: Ultraviolet to gamma ray (Vol. 10699, p. 106993A). https://doi.org/10.1117/12.2312261
Kanmae, T., Stenbaek-Nielsen, H. C., & McHarg, M. G. (2007). Altitude resolved sprite spectra with 3 ms temporal resolution. Geophysical Research Letters, 34(7).
Kolmasova, I., Imai, M., Santolík, O., Kurth, W. S., Hospodarsky, G. B., Gurnett, D. A., et al. (2018). Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on earth. Nature Astronomy, 2(7), 544–548.
Lee, A. Y., Yung, Y. L., Cheng, B.-M., Bahou, M., Chung, C.-Y., & Lee, Y.-P. (2001). Enhancement of deuterated ethane on Jupiter. The Astrophysical Journal Letters, 551(1), L93.
Levin, Z., Borucki, W. J., & Toon, O. B. (1983). Lightning generation in planetary atmospheres. Icarus, 56(1), 80–115.
Little, B., Anger, C. D., Ingersoll, A. P., Vasavada, A. R., Senske, D. A., Breneman, H. H., et al. (1999). Galileo images of lightning on Jupiter. Icarus, 142(2), 306–323.
Luque, A., Dubrovin, D., Gordillo-Vazquez, F. J., Ebert, U., Parra-Rojas, F. C., Yair, Y., & Price, C. (2014). Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses. Journal of Geophysical Research: Space Physics, 119(10), 8705–8720.
Markwardt, C. B. (2009). Non-linear least-squares fitting in IDL with MPFIT. In Astronomical data analysis software and systems XVIII (Vol. 411, p. 251). Retrieved from http://adsabs.harvard.edu/full/2009ASPC.411.251M
Morales-Juberías, R., Sanchez-Lavega, A., Lecacheux, J., & Colas, F. (2002). A comparative study of jovian cyclonic features from a six-year (1994-2000) survey. Icarus, 160(2), 325–335.
Moses, J. I., Fouchet, T., Bezard, B., Gladstone, G. R., Lellouch, E., & Feuchtgruber, H. (2005). Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research, 110(E8).
Pasko, V. P. (2010). Recent advances in theory of transient luminous events. Journal of Geophysical Research, 115(A6).
Perez-Invernon, F. J., Luque, A., & Gordillo-Vazquez, F. J. (2017). Three- dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn. Journal of Geophysical Research: Space Physics, 122(7), 7636–7653.
Pryor, W. R., Ajello, J. M., Tobiska, W. K., Shemansky, D. E., James, G. K., Hord, C. W., et al. (1998). Galileo ultraviolet spectrometer observations. Journal of Geophysical Research, 103(E9), 20–149.
Rinnert, K., Lanzerotti, L. J., Uman, M. A., Dehmel, G., Gliem, F. O., Krider, E. P., & Bach, J. (1998). Measurements of radio frequency signals from lightning in Jupiter's atmosphere. Journal of Geophysical Research: Planets, 103(E10), 22979–22992.
Rodger, C. J. (1999). Red sprites, upward lightning, and VLF perturbations. Reviews of Geophysics, 37(3), 317–336.
Sato, M., Ushio, T., Morimoto, T., Kikuchi, M., Kikuchi, H., Adachi, T., et al. (2015). Overview and early results of the global lightning and sprite measurements mission. Journal of Geophysical Research: Atmospheres, 120(9), 3822–3851.
Smith, B. A., Soderblom, L. A., Johnson, T. V., Ingersoll, A. P., Collins, S. A., Shoemaker, E. M., et al. (1979). The jupiter system through the eyes of Voyager 1. Science, 204(4396), 951–972.
Smith, P. L., Yoshino, K., Parkinson, W., Ito, K., & Stark, G. (1991). Highresolution, VUV (147–201 nm) photoabsorption cross sections for C2H2 at 195 and 295 K. Journal of Geophysical Research: Planets, 96(E2), 17529–17533.
Trantham, B. (2014). JNO-J-UVS-3-RDR-V1.0. NASA Planetary Data System.
Tollefson, J., Wong, M. H., de Pater, I., Simon, A. A., Orton, G. S., Rogers, J. H., et al. (2017). Changes in Jupiter's zonal wind profile preceding and during the Juno mission. Icarus, 296, 163–178.
Vasavada, A. R., & Showman, A. P. (2005). Jovian atmospheric dynamics: An update after Galileo and Cassini. Reports on Progress in Physics, 68(8), 1935.
Vincent, M. B., Clarke, J. T., Ballester, G. E., Harris, W. M., West, R. A., Trauger, J. T., et al. (2000). Jupiter's polar regions in the ultraviolet as imaged by HST/WFPC2: Auroral-aligned features and zonal motions. Icarus, 143(2), 205–222.
Wong, M. H., Simon, A. A., Tollefson, J. W., de Pater, I., Barnett, M. N., Hsu, A. I., et al. (2020). High-resolution UV/optical/IR imaging of Jupiter in 2016-2019. The Astrophysical Journal Supplement Series, 247(2), 58.
Yair, Y., Takahashi, Y., Yaniv, R., Ebert, U., & Goto, Y. (2009). A study of the possibility of sprites in the atmospheres of other planets. Journal of Geophysical Research, 114(E9).
Zarka, P., & Pedersen, B. M. (1986). Radio detection of Uranian lightning by Voyager 2. Nature, 323(6089), 605–608.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.