STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Nichols, J. D.; Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Allegrini, F.; Southwest Research Institute, San Antonio, TX, United States, Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States
Bagenal, F.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Bunce, E. J.; Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Cowley, S. W. H.; Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Ebert, R. W.; Southwest Research Institute, San Antonio, TX, United States, Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, United States
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Huscher, E.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Kamran, A.; Department of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
Kurth, W. S.; Department of Physics and Astronomy, University of Iowa, Iowa City, IA, United States
Wilson, R. J.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
An Enhancement of Jupiter's Main Auroral Emission and Magnetospheric Currents
Abe, T., & Nishida, A. (1986). Anomalous outward diffusion and associated heating of iogenic ions in the Jovian magnetosphere. Journal of Geophysical Research, 91, 10,003–10,011. https://doi.org/10.1029/ja091ia09p10003
Allegrini, F., Mauk, B., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., Bagenal, F., Bolton, S., Bonfond, B., Connerney, J. E. P., Ebert, R. W., Greathouse, T., Imai, M., Levin, S., Louarn, P., McComas, D. J., Saur, J., Szalay, J. R., Valek, P. W., & Wilson, R. J. (2020). Energy flux and characteristic energy of electrons over Jupiter's main auroral emission. Journal of Geophysical Research: Space Physics, 125(4). https://doi.org/10.1029/2019JA027693
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., & Zink, J. L.(2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 44, 7131–7139. https://doi.org/10.1002/2017GL073180
Bagenal, F., & Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. Journal of Geophysical Research, 116, A05209. htpps://doi.org/10.1029/2010JA016294
Bagenal, F., Dougherty, L. P., Bodisch, K. M., Richardson, J. D., & Belcher, J. M. (2017). Survey of Voyager plasma science ions at Jupiter: 1. Analysis method. Journal of Geophysical Research: Space Physics, 122, 8241–8256. https://doi.org/10.1002/2016JA023797
Bodisch, K. M., Dougherty, L. P., & Bagenal, F. (2017). Survey of Voyager plasma science ions at Jupiter: 3. Protons and minor ions. Journal of Geophysical Research: Space Physics, 122, 8277–8294. https://doi.org/10.1002/2017JA024148
Bunce, E. J., & Cowley, S. W. H. (2001). Local time asymmetry of the equatorial current sheet in Jupiter's magnetosphere. Planetary and Space Science, 49, 261–274.
Bunce, E. J., Cowley, S. W. H., Wright, D. M., Coates, A. J., Dougherty, M. K., Krupp, N., & Rymer, A. M. (2005). In situ observations of a solar wind compression-induced hot plasma injection in Saturn's tail. Geophysical Research Letters, 32, L20S04. htpps://doi.org/10.1029/2005GL022888
Caudal, G. (1986). A self-consistent model of Jupiter's magnetodisc including the effects of centrifugal force and pressure. Journal of Geophysical Research, 91(A4), 4201–4221.
Chané, E., Saur, J., Keppens, R., & Poedts, S. (2017). How is the Jovian main auroral emission affected by the solar wind? Journal of Geophysical Research: Space Physics, 122, 1960–1978. https://doi.org/10.1002/2016JA023318
Clark, G., Mauk, B. H., Haggerty, D., Paranicas, C., Kollmann, P., Rymer, A., & Valek, P. (2017). Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions. Geophysical Research Letters, 44, 8703–8711. https://doi.org/10.1002/2017GL074366
Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., & Valek, P. (2018). Precipitating electron energy flux and characteristic energies in Jupiter's main auroral region as measured by Juno/JEDI. Journal of Geophysical Research: Space Physics, 123, 7554–7567. https://doi.org/10.1029/2018JA025639
Clarke, J. T., Nichols, J. D., Gérard, J. C., Grodent, D., Hansen, K. C., Kurth, W. S., & Cecconi, B.(2009). Response of Jupiter's and Saturn's auroral activity to the solar wind. Journal of Geophysical Research, 114, A05210. htpps://doi.org/10.1029/2008JA013694
Connerney, J. E. P., Acuña, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86(A10), 8370–8384.
Connerney, J. E. P., Adriani, A., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Cowley, S. W. H., Gerard, J.-C., Gladstone, G. R., Grodent, D., Hospodarsky, G., Jorgensen, J. L., Kurth, W. S., Levin, S. M., Mauk, B., McComas, D. J., Mura, A., Paranicas, C., Smith, E. J., Thorne, R. M., Valek, P., & Waite, J. (2017). Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science, 356(6340), 826–832. https://doi.org/10.1126/science.aam5928
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., Jorgensen, P. S., Lawton, P., Malinnikova, A., Merayo, J. M., Murphy, S., Odom, J., Oliversen, R., Schnurr, R., Sheppard, D., & Smith, E. J. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1-4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., & Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Cowley, S. W. H., Alexeev, I. I., Belenkaya, E. S., Bunce, E. J., Cottis, C. E., Kalegaev, V. V., & Wilson, F. J. (2005). A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter's polar ionosphere. Journal of Geophysical Research, 110, A11209. htpps://doi.org/10.1029/2005JA011237
Cowley, S. W. H., & Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system. Planetary and Space Science, 49, 1067–1088.
Cowley, S. W. H., Deason, A. J., & Bunce, E. J. (2008). Axi-symmetric models of auroral current systems in Jupiter's magnetosphere with predictions for the Juno mission. Annals of Geophysicae, 26(12), 4051–4074.
Cowley, S. W. H., Nichols, J. D., & Andrews, D. J. (2007). Modulation of Jupiter's plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: A simple theoretical model. Annals of Geophysicae, 25, 1433–1463.
Cowley, S. W. H., Nichols, J. D., & Bunce, E. J. (2002). Distributions of current and auroral precipitation in Jupiter's middle magnetosphere computed from steady-state Hill-Pontius angular velocity profiles: Solutions for current sheet and dipole magnetic field models. Planetary and Space Science, 50, 717–734.
Cowley, S. W. H., Provan, G., Bunce, E. J., & Nichols, J. D. (2017). Magnetosphere-ionosphere coupling at Jupiter: Expectations for Juno Perijove 1 from a steady state axisymmetric physical model. Geophysical Research Letters, 44, 4497–4505. htpps://doi.org/10.1002/2017GL073129
Dougherty, L. P., Bodisch, K. M., & Bagenal, F. (2017). Survey of Voyager plasma science ions at Jupiter: 2. Heavy ions. Journal of Geophysical Research: Space Physics, 122, 8257–8276. https://doi.org/10.1002/2017JA024053
Frank, L. A., Paterson, W. R., & Khurana, K. K. (2002). Observations of thermal plasmas in Jupiter's magnetotail. Journal of Geophysical Research, 107(A1), 1003. https://doi.org/10.1029/2001JA000077
Grodent, D., Bonfond, B., Yao, Z., Gérard, J. C., Radioti, A., Dumont, M., & Valek, P. (2018). Jupiter's aurora observed with HST during Juno Orbits 3 to 7. Journal of Geophysical Research: Space Physics, 123, 3299–3319. https://doi.org/10.1002/2017JA025046
Grodent, D., Clarke, J. T., Kim, J., Waite Jr, J. H., & Cowley, S. W. H. (2003). Jupiter's main auroral oval observed with HST-STIS. Journal of Geophysical Research, 108(A11), 1389. htpps://doi.org/10.1029/2003JA009921
Gurnett, D. A. (1975). The Earth as a radio source: The nonthermal continuum. Journal of Geophysical Research, 80, 2751–2763. https://doi.org/10.1029/ja080i019p02751
Gurnett, D. A., Kurth, W. S., & Scarf, F. L. (1980). The structure of the Jovian magnetotail from plasma wave observations. Geophysical Research Letters, 7, 53–56. https://doi.org/10.1029/GL007i001p00053
Hill, T. W. (1979). Inertial limit on corotation. Journal of Geophysical Research, 84(A11), 6554–6558.
Hill, T. W. (2001). The Jovian auroral oval. Journal of Geophysical Research, 106(A5), 8101–8108.
Huang, T. S., & Hill, T. W. (1989). Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere. Journal of Geophysical Research, 94(A4), 3761–3765.
Kane, M., Mauk, B. H., Keath, E. P., & Krimigis, S. M. (1995). Hot ions in Jupiter's magnetodisc: A model for Voyager 2 low-energy charged particle measurements. Journal of Geophysical Research, 100(A10), 19,473–19,486.
Khurana, K. K. (1992). A generalized hinged-magnetodisc model of Jupiter's nightside current sheet. Journal of Geophysical Research, 97, 6269–6276. https://doi.org/10.1029/92JA00169
Khurana, K. K. (2001). Influence of solar wind on Jupiter's magnetosphere deduced from currents in the equatorial plane. Journal of Geophysical Research, 106(A11), 25,999–26,016.
Khurana, K. K., & Schwarzl, H. K. (2005). Global structure of Jupiter's magnetospheric current sheet. Journal of Geophysical Research, 110, 8385. htpps://doi.org/10.1029/2004JA010757
Kim, T. K., Ebert, R. W., Valek, P. W., Allegrini, F., McComas, D. J., Bagenal, F., & Nicolaou, G. (2019). Method to derive ion properties from Juno JADE including abundance estimates for O+ and S2+. Journal of Geophysical Research: Space Physics, 110, A07227. https://doi.org/10.1029/2018JA026169
Kivelson, M. G., & Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter's outer magnetosphere. Journal of Geophysical Research, 110, A12209. htpps://doi.org/10.1029/2005JA011176
Knight, S. (1973). Parallel electric fields. Planetary and Space Science, 21(5), 741–750.
Kotsiaros, S., Connerney, J. E. P., Clark, G., Allegrini, F., Gladstone, G. R., Kurth, W. S., & Levin, S. M. (2019). Birkeland currents in Jupiter's magnetosphere observed by the polar-orbiting Juno spacecraft. Nature Astronomy, 3, 904–909. https://doi.org/10.1038/s41550-019-0819-7
Krimigis, S. M., Carbary, J. F., Keath, E. P., Bostrom, C. O., Axford, W. I., Gloeckler, G., & Armstrong, T. P. (1981). Characteristics of hot plasma in the Jovian magnetosphere—Results from the Voyager spacecraft. Journal of Geophysical Research, 86(A10), 8227–8257.
Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison, W. T., Piker, C. W., Sampl, M., & Zarka, P. (2017). The Juno waves investigation. Space Science Reviews, 213(1–4), 347–392. https://doi.org/10.1007/s11214-017-0396-y
Louarn, P., Kivelson, M. G., & Kurth, W. S. (2016). On the links between the radio flux and magnetodisk distortions at Jupiter. Journal of Geophysical Research A: Space Physics, 121, 9651–9670. https://doi.org/10.1002/2016JA023106
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., & Valek, P. (2017). Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 44, 4410–4418. https://doi.org/10.1002/2016GL072286
Mauk, B. H., & Krimigis, S. M. (1987). Radial force balance within Jupiter's dayside magnetosphere. Journal of Geophysical Research, 92(A9), 9931–9941.
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., Crary, F., Desai, M. I., De Los Santos, A., Demkee, D., Dickinson, J., Everett, D., Finley, T., Gribanova, A., Hill, R., Johnson, J., Kofoed, C., Loeffler, C., Louarn, P., Maple, M., Mills, W., Pollock, C., Reno, M., Rodriguez, B., Rouzaud, J., Santos-Costa, D., Valek, P., Weidner, S., Wilson, P., Wilson, R. J., & White, D. (2017). The Jovian Auroral Distributions Experiment (JADE) on the Juno mission to Jupiter. Space Science Reviews, 213(1–4), 547–643. https://doi.org/10.1007/s11214-013-9990-9
McNutt, R. L. Jr., Belcher, J. W., & Bridge, H. S. (1981). Positive-ion observations in the middle magnetosphere of Jupiter. Journal of Geophysical Research, 86(NA10), 8319–8342.
Millward, G., Miller, S., Stallard, T., Achilleos, N., & Aylward, A. D. (2005). On the dynamics of the Jovian ionosphere and thermosphere. IV. Ion-neutral coupling. Icarus, 173, 200–211. https://doi.org/10.1016/j.icarus.2004.07.027
Nichols, J. D. (2011a). Magnetosphere-ionosphere coupling at Jupiter-like exoplanets with internal plasma sources: Implications for detectability of auroral radio emissions. Monthly Notices of the Royal Astronomical Society, 414(3), 2125–2138.
Nichols, J. D. (2011b). Magnetosphere-ionosphere coupling in Jupiter's middle magnetosphere: Computations including a self-consistent current sheet magnetic field model. Journal of Geophysical Research, 116, A10232. htpps://doi.org/10.1029/2011JA016922
Nichols, J. D., Achilleos, N., & Cowley, S. W. H. (2015). A model of force balance in Jupiter's magnetodisc including hot plasma pressure anisotropy. Journal of Geophysical Research, 120, 10,185–10,206. htpps://doi.org/10.1002/2015JA021807
Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., & Yoshikawa, I. (2017). Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44, 7643–7652. htpps://doi.org/10.1002/2017GL073029
Nichols, J. D., Clarke, J. T., Gérard, J. C., Grodent, D., & Hansen, K. C. (2009). Variation of different components of Jupiter's auroral emission. Journal of Geophysical Research, 114, A06210. htpps://doi.org/10.1029/2009JA014051
Nichols, J. D., & Cowley, S. W. H. (2003). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate. Annales Geophysicae, 21, 1419–1441.
Nichols, J. D., & Cowley, S. W. H. (2004). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Annales Geophysicae, 22, 1799–1827.
Nichols, J. D., & Cowley, S. W. H. (2005). Magnetosphere-ionosphere coupling currents in Jupiter's middle magnetosphere: Effect of magnetosphere-ionosphere decoupling by field-aligned auroral voltages. Annales Geophysicae, 23, 799–808.
Pontius, D. H. Jr. (1997). Radial mass transport and rotational dynamics. Journal of Geophysical Research, 102(A4), 7137–7150.
Ray, L. C., Achilleos, N. A., Vogt, M. F., & Yates, J. N. (2014). Local time variations in Jupiter's magnetosphere-ionosphere coupling system. Journal of Geophysical Research: Space Physics, 119, 4740–4751. htpps://doi.org/10.1002/2014JA019941
Ray, L. C., Ergun, R. E., Delamere, P. A., & Bagenal, F. (2010). Magnetosphere-ionosphere coupling at Jupiter: Effect of field-aligned potentials on angular momentum transport. Journal of Geophysical Research, 115, A09211. htpps://doi.org/10.1029/2010JA015423
Smith, C., & Aylward, A. D. (2009). Coupled rotational dynamics of Jupiter's thermosphere and magnetosphere. Annales Geophysicae, 27(1), 199–230.
Smith, E. J., Davis, L. Jr., Jones, D. E., Coleman, P. J. Jr., Colburn, D. S., Dyal, P., & Frandsen, A. M. A. (1974). The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10. Journal of Geophysical Research, 79(25), 3501–3513.
Southwood, D. J., & Kivelson, M. G. (2001). A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. Journal of Geophysical Research, 106(A4), 6123–6130.
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E., & Wilson, R. J.(2017). Plasma measurements in the Jovian polar region with Juno/JADE. Geophysical Research Letters, 44, 7122–7130. https://doi.org/10.1002/2017GL072837
Tao, C., Fujiwara, H., & Kasaba, Y. (2009). Neutral wind control of the Jovian magnetosphere-ionosphere current system. Journal of Geophysical Research, 114, A08307. htpps://doi.org/10.1029/2008JA013966
Tao, C., Fujiwara, H., & Kasaba, Y. (2010). Jovian magnetosphere–ionosphere current system characterized by diurnal variation of ionospheric conductance. Planetary and Space Science, 58(3), 351–364.
Vasyliunas, V. M. (1983). Plasma distribution and flow, Physics of the Jovian magnetosphere (pp. 395–453). Cambridge, UK: Cambridge University Press.
Yao, Z. H., Grodent, D., Kurth, W. S., Clark, G., Mauk, B. H., Kimura, T., & Levin, S. M. (2019). On the relation between Jovian aurorae and the loading/unloading of the magnetic flux: Simultaneous measurements from Juno, Hubble Space Telescope, and Hisaki. Geophysical Research Letters, 46, 11,632–11,641. https://doi.org/10.1029/2019GL084201
Yoshikawa, I., Suzuki, F., Hikida, R., Yoshioka, K., Murakami, G., Tsuchiya, F., & Fujimoto, M. (2017). Volcanic activity on Io and its influence on the dynamics of the Jovian magnetosphere observed by EXCEED/Hisaki in 2015. Earth, Planets and Space, 69(1), 110. https://doi.org/10.1186/s40623-017-0700-9