Spatial and molecular mapping of PfKelch13 gene polymorphism in Africa in the era of emerging Plasmodium falciparum resistance to artemisinin: A systematic review
[en] The spread of Plasmodium falciparum (Pf) isolates carrying mutations in the kelch 13 (PfK13) gene associated with artemisinin resistance (PfART-R) in Southeast Asia (SEA) threatens malaria control and elimination efforts. An eventual emergence of PfART-R in Africa would result in a major public health problem. We conducted a systematic review to investigate the frequency and spatial distribution of PfK13 mutants in Africa, including mutants linked to PfART-R in SEA. Seven databases were searched for relevant articles published before January, 2019 following PRISMA guidelines, identifying 53 studies that sequenced the PfK13 gene of 23100 sample isolates in 41 Sub-Saharan African countries. The PfK13 sequence was highly polymorphic (292 alleles, including 255 in the PfK13-propeller domain) but with mutations occurring at very low relative frequencies. Nonsynonymous mutations were found in only 626 isolates (2·7%) from Western, Central, and Eastern Africa. Nine different mutations linked to PfART-R in SEA according to the WHO (F446I, C469Y, M476I, R515K, S522C, P553L, V568G, P574L, and A675V) were detected, mainly in Eastern Africa. Several other PfK13 mutations such as those structurally mimicking SEA PfART-R mutations were also identified, but their relevance for drug resistance is still unknown. This review shows that Africa, thought to be spared from PfART-R, has reported resistance-related mutants in recent years. Surveillance using PfART-R molecular markers can provide valuable decision-making information to sustain the effectiveness of ART in the continent.
Disciplines :
Immunology & infectious disease Public health, health care sciences & services
Author, co-author :
Kayiba, Nadine
Yobi, Doudou
Tshibangu-Kabamba, Evariste
Phuoc Tuan, Vo
Yamaoka, Yoshio
Devleeschauwer, Brecht
Mvumbi, Dieudonné
Okitolonda, Emile
De Mol, Patrick ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
Mvumbi, Georges
Hayette, Marie-Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie
Spatial and molecular mapping of PfKelch13 gene polymorphism in Africa in the era of emerging Plasmodium falciparum resistance to artemisinin: A systematic review
Alternative titles :
[en] Cartographie spatiale et moléculaire du polymorphisme du gène PfKelch13 en Afrique à l'époque de l'émergence de la résistance de P. falciparum à l'artémisinine: revue systématique
Publication date :
2021
Journal title :
The Lancet Infectious Diseases
ISSN :
1473-3099
eISSN :
1474-4457
Publisher :
The Lancet Publishing Group, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Mise en place d'un système de surveillance de la résistance de Plasmodium falciparum aux antipuludéens en RD Congo
Funders :
ARES - Académie de Recherche et d'Enseignement Supérieur
WHO. World malaria report 2018. https://www.who.int/malaria/publications/world-malaria-report-2018/en/, Nov 19, 2018. (Accessed 16 March 2019)
Bhatt, S, Weiss, D, Cameron, E, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526 (2015), 207–211.
Menard, D, Dondorp, A, Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med, 7, 2017, a025619.
Noedl, H, Se, Y, Schaecher, K, et al. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359 (2008), 2619–2620.
Dondorp, AM, Nosten, F, Yi, P, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361 (2009), 455–467.
Amaratunga, C, Sreng, S, Suon, S, et al. Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis 12 (2012), 851–858.
Loy, DE, Liu, W, Li, Y, et al. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 47 (2017), 87–97.
Mita, T, Tachibana, S-I, Hashimoto, M, Hirai, M, Plasmodium falciparum kelch 13: a potential molecular marker for tackling artemisinin-resistant malaria parasites. Expert Rev Anti Infect Ther 14 (2016), 125–135.
Ménard, D, Khim, N, Beghain, J, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med 374 (2016), 2453–2464.
Wells, TN, Van Huijsduijnen, RH, Van Voorhis, WC, Malaria medicines: a glass half full?. Nat Rev Drug Discov 14 (2015), 424–442.
WHO. Methods for surveillance of antimalarial drug efficacy. https://www.who.int/malaria/publications/atoz/9789241597531/en/, November, 2009. (Accessed 16 March 2019)
Plowe, C, Antimalarial drug resistance in Africa: strategies for monitoring and deterrence. Curr Top Microbiol Immunol 295 (2005), 55–79.
Flegg, JA, Guerin, PJ, White, NJ, Stepniewska, K, Standardising the measurement of parasite clearance in falciparum malaria: the parasite clearance estimator. Malar J, 10, 2011, 339.
Ariey, F, Witkowski, B, Amaratunga, C, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505 (2014), 50–55.
Saralamba, S, Pan-Ngum, W, Maude, RJ, et al. Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 108 (2011), 397–402.
WHO. Artemisinin resistance and artemisinin-based combination therapy efficacy: status report. https://apps.who.int/iris/handle/10665/274362, 2018. (Accessed 20 March 2019)
Ashley, EA, Dhorda, M, Fairhurst, RM, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371 (2014), 411–423.
Moher, D, Liberati, A, Tetzlaff, J, Altman, D, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med, 6, 2009, e1000097.
Bernardo, WM, PRISMA statement and PROSPERO. Int Braz J Urol 43 (2017), 383–384.
Stang, A, Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur Journal Epidemiol 25 (2010), 603–605.
den Dunnen, JT, Antonarakis, SE, Nomenclature for the description of human sequence variations. Hum Genet 109 (2001), 121–124.
Ogino, S, Gulley, ML, den Dunnen, JT, Wilson, RB, Standard mutation nomenclature in molecular diagnostics: practical and educational challenges. J Mol Diagn 9 (2007), 1–6.
Wickham, H, ggplot2: elegant graphics for data analysis. 2016, Springer-Verlag, New York.
Kahle, D, Wickham, H, ggmap: spatial Visualisation with ggplot2. R J 5 (2013), 144–161.
Keitt, TH, Bivand, R, Pebesma, E, Rowlingson, B, rgdal: bindings for the Geospatial Data Abstraction Library. https://cran.r-project.org/web/packages/rgdal/index.html. (Accessed 5 January 2019)
R Core Team. R: a language and environment for statistical computing. https://scholar.google.com/scholar?hl=fr&as_sdt=0%2C5&q=R+Core+Team.+R%3A+a+language+and+environment+for+statistical+computing.+2018.+http%3A%2F%2Fwww.R-project.org%2F&btnG=, 2018. (Accessed 11 September 2020)
Apinjoh, TO, Mugri, RN, Miotto, O, et al. Molecular markers for artemisinin and partner drug resistance in natural Plasmodium falciparum populations following increased insecticide treated net coverage along the slope of mount Cameroon: cross-sectional study. Infect Dis Poverty, 6, 2017, 136.
Asua, V, Vinden, J, Conrad, MD, et al. Changing molecular markers of antimalarial drug sensitivity across Uganda. Antimicrob Agents Chemother 63 (2019), e01818–e01918.
Balikagala, B, Mita, T, Ikeda, M, et al. Absence of in vivo selection for K13 mutations after artemether–lumefantrine treatment in Uganda. Malar J, 16, 2017, 23.
Bayih, AG, Getnet, G, Alemu, A, Getie, S, Mohon, AN, Pillai, DR, A unique Plasmodium falciparum K13 gene mutation in northwest Ethiopia. Am J Trop Med Hyg 94 (2016), 132–135.
Boussaroque, A, Fall, B, Madamet, M, et al. Emergence of mutations in the K13 propeller gene of Plasmodium falciparum isolates from Dakar, Senegal, in 2013–2014. Antimicrob Agents Chemother 60 (2016), 624–627.
Conrad, MD, Bigira, V, Kapisi, J, et al. Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PloS One, 9, 2014, e105690.
Cooper, RA, Conrad, MD, Watson, QD, et al. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob Agents Chemother 59 (2015), 5061–5064.
Dama, S, Niangaly, H, Ouattara, A, et al. Reduced ex vivo susceptibility of Plasmodium falciparum after oral artemether-lumefantrine treatment in Mali. Malar J, 16, 2017, 59.
de Laurent, ZR, Chebon, LJ, Ingasia, LA, et al. Polymorphisms in the K13 gene in Plasmodium falciparum from different malaria transmission areas of Kenya. Am J Trop Med Hyg 98 (2018), 1360–1366.
Dieye, B, Affara, M, Sangare, L, et al. West Africa international centers of excellence for malaria research: drug resistance patterns to artemether–lumefantrine in Senegal, Mali, and The Gambia. American J Trop Med Hyg 95 (2016), 1054–1060.
Djaman, JA, Olefongo, D, Ako, AB, et al. Molecular epidemiology of malaria in Cameroon and Côte d'Ivoire. XXXI. Kelch 13 propeller sequences in Plasmodium falciparum isolates before and after implementation of artemisinin-based combination therapy. Am J Trop Med Hyg 97 (2017), 222–224.
Escobar, C, Pateira, S, Lobo, E, et al. Polymorphisms in Plasmodium falciparum K13-propeller in Angola and Mozambique after the introduction of the ACTs. PLoS One, 10, 2015, e0119215.
Guerra, M, Neres, R, Salgueiro, P, et al. Plasmodium falciparum genetic diversity in continental Equatorial Guinea before and after introduction of artemisinin-based combination therapy. Antimicrob Agents Chemother 61 (2017), e02556–e02615.
Gupta, H, Macete, E, Bulo, H, et al. Drug-resistant polymorphisms and copy numbers in Plasmodium falciparum, Mozambique, 2015. Emerg Infect Dis 24 (2018), 40–48.
Hemming-Schroeder, E, Umukoro, E, Lo, E, et al. Impacts of antimalarial drugs on Plasmodium falciparum drug resistance markers, Western Kenya, 2003–2015. Am J Trop Med Hyg 98 (2018), 692–699.
Ogouyèmi-Hounto, A, Damien, G, Deme, AB, et al. Lack of artemisinin resistance in Plasmodium falciparum in northwest Benin after 10 years of use of artemisinin-based combination therapy. Parasite, 23, 2016, 28.
Huang, B, Deng, C, Yang, T, et al. Polymorphisms of the artemisinin resistant marker (K13) in Plasmodium falciparum parasite populations of Grande Comore Island 10 years after artemisinin combination therapy. Parasit Vectors, 8, 2015, 634.
Ikeda, M, Kaneko, M, Tachibana, S-I, et al. Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014–2016. Emerg Infect Dis 24 (2018), 718–726.
Isozumi, R, Uemura, H, Kimata, I, et al. Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum. Emerg Infect Dis 21 (2015), 490–492.
Kakolwa, MA, Mahende, MK, Ishengoma, DS, et al. Efficacy and safety of artemisinin-based combination therapy, and molecular markers for artemisinin and piperaquine resistance in mainland Tanzania. Malar J, 17, 2018, 369.
Kamau, E, Campino, S, Amenga-Etego, L, et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Diseases 211 (2015), 1352–1355.
Kiaco, K, Teixeira, J, Machado, M, do Rosário, V, Lopes, D, Evaluation of artemether-lumefantrine efficacy in the treatment of uncomplicated malaria and its association with pfmdr1, pfatpase6 and K13-propeller polymorphisms in Luanda, Angola. Malar J, 14, 2015, 504.
Koukouikila-Koussounda, F, Jeyaraj, S, Nguetse, CN, et al. Molecular surveillance of Plasmodium falciparum drug resistance in the Republic of Congo: four and nine years after the introduction of artemisinin-based combination therapy. Malar J, 16, 2017, 155.
Leroy, D, Macintyre, F, Adamy, M, et al. High proportion of multiple copies of Plasmodium falciparum plasmepsin-2 gene in African isolates: is piperaquine resistance emerging in Africa?. bioRxiv, 2018 published online July 3. https://www.biorxiv.org/content/10.1101/361204v1 (preprint).
Li, J, Chen, J, Xie, D, et al. Limited artemisinin resistance-associated polymorphisms in Plasmodium falciparum K13-propeller and PfATPase6 gene isolated from Bioko Island, Equatorial Guinea. Int J Parasitol Drugs Drug Resist 6 (2016), 54–59.
Ljolje, D, Dimbu, PR, Kelley, J, et al. Prevalence of molecular markers of artemisinin and lumefantrine resistance among patients with uncomplicated Plasmodium falciparum malaria in three provinces in Angola, 2015. Malar J, 17, 2018, 84.
Lucchi, NW, Komino, F, Okoth, SA, et al. In vitro and molecular surveillance for antimalarial drug resistance in Plasmodium falciparum parasites in western Kenya reveals sustained artemisinin sensitivity and increased chloroquine sensitivity. Antimicrob Agents Chemother 59 (2015), 7540–7547.
Plucinski, MM, Dimbu, PR, Macaia, AP, et al. Efficacy of artemether–lumefantrine, artesunate–amodiaquine, and dihydroartemisinin–piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in Angola, 2015. Malar J, 16, 2017, 62.
Mayengue, PI, Niama, RF, Kouhounina Batsimba, D, et al. No polymorphisms in K13-propeller gene associated with artemisinin resistance in Plasmodium falciparum isolated from Brazzaville, Republic of Congo. BMC Infect Dis, 18, 2018, 538.
Menard, S, Tchoufack, JN, Maffo, CN, et al. Insight into k13-propeller gene polymorphism and ex vivo DHA-response profiles from Cameroonian isolates. Malar J, 15, 2016, 572.
Hawkes, M, Conroy, AL, Opoka, RO, et al. Slow clearance of Plasmodium falciparum in severe paediatric malaria, Uganda, 2011–2013. Emerg Infect Dis 21 (2015), 1237–1239.
Miotto, O, Amato, R, Ashley, EA, et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47 (2015), 226–234.
Mita, T, Culleton, R, Takahashi, N, et al. Little polymorphism at the K13 propeller locus in worldwide Plasmodium falciparum populations prior to the introduction of artemisinin combination therapies. Antimicrob Agents Chemother 60 (2016), 3340–3347.
Muwanguzi, J, Henriques, G, Sawa, P, Bousema, T, Sutherland, CJ, Beshir, KB, Lack of K13 mutations in Plasmodium falciparum persisting after artemisinin combination therapy treatment of Kenyan children. Malar J, 15, 2016, 36.
Mvumbi, DM, Bobanga, TL, Kayembe, J-MN, et al. Molecular surveillance of Plasmodium falciparum resistance to artemisinin-based combination therapies in the Democratic Republic of Congo. PLoS One, 12, 2017, e0179142.
Oboh, MA, Ndiaye, D, Antony, HA, et al. Status of artemisinin resistance in malaria parasite Plasmodium falciparum from molecular analyses of the Kelch13 gene in southwestern Nigeria. Biomed Res Int, 2018, 2018, 2305062.
Ocan, M, Bwanga, F, Okeng, A, et al. Prevalence of K13-propeller gene polymorphisms among Plasmodium falciparum parasites isolated from adult symptomatic patients in northern Uganda. BMC Infect Dis, 16, 2016, 428.
Ouattara, A, Kone, A, Adams, M, et al. Polymorphisms in the K13-propeller gene in artemisinin-susceptible Plasmodium falciparum parasites from Bougoula-Hameau and Bandiagara, Mali. Am J Trop Med Hyg 92 (2015), 1202–1206.
Tumwebaze, P, Tukwasibwe, S, Taylor, A, et al. Changing antimalarial drug resistance patterns identified by surveillance at three sites in Uganda. J Iinfect Dis 215 (2017), 631–635.
Plucinski, MM, Talundzic, E, Morton, L, et al. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine for treatment of uncomplicated malaria in children in Zaire and Uíge Provinces, Angola. Antimicrob Agents Chemother 59 (2015), 437–443.
Somé, AF, Sorgho, H, Zongo, I, et al. Polymorphisms in K13, pfcrt, pfmdr1, pfdhfr, and pfdhps in parasites isolated from symptomatic malaria patients in Burkina Faso. Parasite, 23, 2016, 60.
Tacoli, C, Gai, PP, Bayingana, C, et al. Artemisinin resistance-associated K13 polymorphisms of Plasmodium falciparum in southern Rwanda, 2010–2015. Am J Trop Med Hyg 95 (2016), 1090–1093.
Talundzic, E, Ndiaye, YD, Deme, AB, et al. Molecular epidemiology of Plasmodium falciparum kelch13 mutations in Senegal determined by using targeted amplicon deep sequencing. Antimicrob Agents Chemother 61 (2017), e02116–e02216.
Tawe, L, Menegon, M, Ramatlho, P, et al. Molecular surveillance of Plasmodium falciparum drug resistance markers in clinical samples from Botswana. Am J Trop Med Hyg 99 (2018), 1499–1503.
Torrentino-Madamet, M, Fall, B, Benoit, N, et al. Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013. Malar J, 13, 2014, 472.
Torrentino-Madamet, M, Collet, L, Lepère, JF, et al. K13-propeller polymorphisms in Plasmodium falciparum isolates from patients in Mayotte in 2013 and 2014. Antimicrob Agents Chemother 59 (2015), 7878–7881.
Madamet, M, Kounta, MB, Wade, KA, et al. Absence of association between polymorphisms in the K13 gene and the presence of Plasmodium falciparum parasites at day 3 after treatment with artemisinin derivatives in Senegal. Int J Antimicrob Agents 49 (2017), 754–756.
Voumbo-Matoumona, DF, Akiana, J, Madamet, M, Kouna, LC, Lekana-Douki, JB, Pradines, B, High prevalence of Plasmodium falciparum antimalarial drug resistance markers in isolates from asymptomatic patients from the Republic of the Congo between 2010 and 2015. J Glob Antimicrob Resist 14 (2018), 277–283.
Voumbo-Matoumona, DF, Kouna, LC, Madamet, M, Maghendji-Nzondo, S, Pradines, B, Lekana-Douki, JB, Prevalence of Plasmodium falciparum antimalarial drug resistance genes in southeastern Gabon from 2011 to 2014. Infect Drug Resist 11 (2018), 1329–1338.
Taylor, SM, Parobek, CM, DeConti, DK, et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211 (2014), 680–688.
Dorkenoo, AM, Yehadji, D, Agbo, YM, et al. Therapeutic efficacy trial of artemisinin-based combination therapy for the treatment of uncomplicated malaria and investigation of mutations in k13 propeller domain in Togo, 2012–2013. Malar J, 15, 2016, 331.
MalariaGEN Plasmodium falciparum Community Project. Genomic epidemiology of artemisinin resistant malaria. eLife, 5, 2016, e08714.
Escalante, AA, Lal, AA, Ayala, FJ, Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149 (1998), 189–202.
Miotto, O, Almagro-Garcia, J, Manske, M, et al. Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia. Nat Genet 45 (2013), 648–655.
Witkowski, B, Lelièvre, J, Barragán, MJL, et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother 54 (2010), 1872–1877.
Li, G-Q, Guo, X-B, Fu, L-C, Jian, H-X, Wang, X-H, Clinical trials of artemisinin and its derivatives in the treatment of malaria in China. Trans R Soc Trop Med Hyg 88 (1994), S5–S6.
Bonnington, CA, Phyo, AP, Ashley, EA, et al. Plasmodium falciparum Kelch 13 mutations and treatment response in patients in Hpa-Pun District, northern Kayin State, Myanmar. Malar J 16 (2017), 1–7.
Cheeseman, IH, McDew-White, M, Phyo, AP, Sriprawat, K, Nosten, F, Anderson, TJ, Pooled sequencing and rare variant association tests for identifying the determinants of emerging drug resistance in malaria parasites. Mol Biol Evol 32 (2015), 1080–1090.
Wang, J, Huang, Y, Zhao, Y, Ye, R, Zhang, D, Pan, W, Introduction of F446I mutation in the K13 propeller gene leads to increased ring survival rates in Plasmodium falciparum isolates. Malar J, 17, 2018, 248.
WWARN K13 Genotype-Phenotype Study Group. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments—a WWARN individual patient data meta-analysis. BMC Med, 17, 2019, 1.
Wang, Z, Shrestha, S, Li, X, et al. Prevalence of K13-propeller polymorphisms in Plasmodium falciparum from China-Myanmar border in 2007–2012. Malar J, 14, 2015, 168.
Anderson, T, Nair, S, White, M, et al. Why are there so many independent origins of artemisinin resistance in malaria parasites?. bioRxiv, 2016 published online May 31. https://www.biorxiv.org/content/10.1101/056291v1.full (preprint).
Singh, GP, Goel, P, Sharma, A, Structural mapping of Kelch13 mutations associated with artemisinin resistance in malaria. J Struct Funct Genomics 17 (2016), 51–56.
Tsombeng, FF, Gendrot, M, Robert, MG, Madamet, M, Pradines, B, Are k13 and plasmepsin II genes, involved in Plasmodium falciparum resistance to artemisinin derivatives and piperaquine in southeast Asia, reliable to monitor resistance surveillance in Africa?. Malar J, 18, 2019, 285.
Demas, AR, Sharma, AI, Wong, W, et al. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc Natl Acad Sci USA 115 (2018), 12799–12804.
Velavan, TP, Nderu, D, Agbenyega, T, Ntoumi, F, Kremsner, PG, An alternative dogma on reduced artemisinin susceptibility: a new shadow from east to west. Proc Natl Acad Sci USA 116 (2019), 12611–12612.
Henrici, RC, Sutherland, CJ, Alternative pathway to reduced artemisinin susceptibility in Plasmodium falciparum. Proc Natl Acad Sci USA 115 (2018), 12556–12558.
Sharma, AI, Demas, AR, Hartl, DL, Wirth, DF, Reply to Velavan et al: polymorphisms of pfcoronin in natural populations: implications for functional significance. Proc Natl Acad Sci USA 116 (2019), 12613–12614.
Lu, F, Culleton, R, Zhang, M, et al. Emergence of indigenous artemisinin-resistant Plasmodium falciparum in Africa. N Engl J Med 376 (2017), 991–993.
Yang, C, Zhang, H, Zhou, R, et al. Polymorphisms of Plasmodium falciparum k13-propeller gene among migrant workers returning to Henan Province, China from Africa. BMC Infect Dis, 17, 2017, 560.