Sesselmann, A.; Institute of Materials Research, German Aerospace Center (DLR), Linder Hoehe, Köln, Germany
Klobes, B.; Jülich Centre for Neutron Science JCNS, Peter Grünberg Institute PGI, JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, Germany
Dasgupta, T.; Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai, India
Gourdon, O.; Los Alamos National Laboratory, LANSCE, Los Alamos, NM, United States
Hermann, Raphaël ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Mueller, E.; Institute of Materials Research, German Aerospace Center (DLR), Linder Hoehe, Köln, Germany, Institute of Inorganic and Analytical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 58, Giessen, Germany
Language :
English
Title :
Neutron diffraction and thermoelectric properties of indium filled InxCo4Sb12 (x = 0.05, 0.2) and indium cerium filled Ce0.05In0.1Co4Sb12 skutterudites
Publication date :
2016
Journal title :
Physica Status Solidi A. Applications and Materials Science
ISSN :
1862-6300
eISSN :
1862-6319
Publisher :
Wiley - VCH Verlag, Weinheim, Germany
Volume :
213
Issue :
3
Pages :
766-773
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
VH NG-407 “Lattice dynamics in emerging functional materials.”; DFG priority program SPP-1386 “Nanostructured Thermoelectrics”
Funders :
VH NG-407 “Lattice dynamics in emerging functional materials.” DOE - United States. Department of Energy
B. C. Sales, D. Mandrus, and, R. K. Williams, Science 272, 1325-1328 (1996).
T. He, J. Chen, H. D. Rosenfeld, and, M. A. Subramanian, Chem. Mater. 18, 759-762 (2006).
A. Grytsiv, P. Rogl, H. Michor, E. Bauer, and, G. Giester, J. Electron. Mater. 42, 2940-2952 (2013).
R. Mallik, C. Stiewe, G. Karpinski, R. Hassdorf, and, E. MÃfÂller, J. Electron. Mater. 38, 1337-1343 (2009).
R.-C. Mallik, C. Stiewe, G. Karpinski, R. Hassdorf, and E. Müller, in: Thermoelectric Properties of Pure and In-added CoSb3 Skutterudite Materials, 6th European Conference on Thermoelectrics, 2008.
H. Li, X. Tang, Q. Zhang, and, C. Uher, Appl. Phys. Lett. 94, 102114 (2009).
K.-H. Park, S.-W. You, S.-C. Ur, I.-H. Kim, S.-M. Choi, and, W.-S. Seo, J. Electron. Mater. 41, 1051-1056 (2012).
J. Peng, W. Xu, Y. Yan, J. Yang, L. Fu, H. Kang, and, J. He, J. Appl. Phys. 112, 024909 (2012).
Y. Tang, Y. Qiu, L. Xi, X. Shi, W. Zhang, L. Chen, S.-M. Tseng, S.-w. Chen, and, G. J. Snyder, Energy Environ. Sci. 7, 812-819 (2014).
L. Xi, Y. Qiu, X. Shi, J. Yang, L. Chen, and, W. Zhang, Mater. China 34, 41-49 (2015)
A. Sesselmann, T. Dasgupta, K. Klemens, S. Perlt, S. Zastrow, and, E. Müller, J. Mater. Res. 26, 1820-1826 (2011).
X. Shi, W. Zhang, L. D. Chen, and, J. Yang, Phys. Rev. Lett. 95, 185503 (2005).
R. P. Hermann, R. Jin, W. Schweika, F. Grandjean, D. Mandrus, B. C. Sales, and, G. J. Long, Phys. Rev. Lett. 90, 135505 (2003).
B. C. Sales, B. C. Chakoumakos, and, D. Mandrus, Phys. Rev. B 61, 2475-2481 (2000).
A. Harnwunggmoung, K. Kurosaki, T. Plirdpring, T. Sugahara, Y. Ohishi, H. Muta, and, S. Yamanaka, J. Appl. Phys. 110, 013521 (2011).
G. Li, K. Kurosaki, Y. Ohishi, H. Muta, and, S. Yamanaka, Mater. Trans. 55, 1232-1236 (2014).
Y. Qiu, J. Xing, X. Gao, L. Xi, X. Shi, H. Gu, and, L. Chen, J. Mater. Chem. A 2, 10952-10959 (2014).
Z. Xiong, L. Xi, J. Ding, X. Chen, X. Huang, H. Gu, L. Chen, and, W. Zhang, J. Mater. Res. 26, 1848-1856 (2011).
J. Eilertsen, S. Rouvimov, and, M. A. Subramanian, Acta Mater. 60, 2178-2185 (2012).
G. A. Slack, and, V. G. Tsoukala, J. Appl. Phys. 76, 1665-1671 (1994).
W. Jeitschko, and, D. Braun, Acta Crystallogr. B 33, 3401-3406 (1977).
A. Huq, J. P. Hodges, O. Gourdon, and, L. Heroux, Z. Kristallogr. Proc. 127-135 (2011).
J. R. Carvajal, Abstracts of the Satellite Meeting on Powder Diffraction of the 15th Congress of the IUCr, 1990.
G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, and, O. Eibl, Acta Mater. 63, 30-43 (2014).
A. May, and, G. J. Snyder, Introduction to Modeling Thermoelectric Transport at High Temperatures (Taylor & Francis, Boca Raton, 2012).
I. Oftedal, Z. Kristallogr. A 66, 517-546 (1928).
B. C. Chakoumakos, and, B. C. Sales, J. Alloys Compd. 407, 87-93 (2006).
J. L. Mi, M. Christensen, E. Nishibori, and, B. B. Iversen, Phys. Rev. B 84, 064114 (2011).
B. T. M. Willis, and, A. W. Pryor, Thermal Vibrations in Crystallography (Cambridge University Press, London, 1975).
A. Bentien, E. Nishibori, S. Paschen, and, B. Iversen, Phys. Rev. B 71, 144107 (2005).
J.-L. Mi, M. Christensen, E. Nishibori, V. Kuznetsov, D. M. Rowe, and, B. B. Iversen, J. Appl. Phys. 107, 113507 (2010).
J. D. Dunitz, V. Schomaker, and, K. N. Trueblood, J. Phys. Chem. 92, 856-867 (1988).
G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, and, A. C. Ehrlich, J. Appl. Phys. 79, 4002-4008 (1996).
J. Leszczynski, V. D. Ros, B. Lenoir, A. Dauscher, C. Candolfi, P. Masschelein, J. Hejtmanek, K. Kutorasinski, J. Tobola, R. I. Smith, C. Stiewe, and, E. Müller, J. Phys. D 46, 495106 (2013).
J. Fleurial, T. Caillat, and A. Borshchevsky, 13th International Conference on Thermoelectrics, Kansas City, MO 1994, pp. 40-44.
J. A. J. Pardoe, and, A. J. Downs, Chem. Rev. 107, 2-45 (2007).
D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC/Taylor & Francis, Boca Raton, 2006).
A. Möchel, I. Sergueev, N. Nguyen, G. J. Long, F. Grandjean, D. C. Johnson, and, R. P. Hermann, Phys. Rev. B 84, 064302 (2011).
L. C. Chapon, L. Girard, A. Haidoux, R. I. Smith, and, D. Ravot, J. Phys.: Condens. Matter. 17, 3525 (2005).
G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R. C. Mallik, and, P. Rogl, Acta Mater. 95, 201-211 (2015).