[en] ETHNOPHARMACOLOGICAL RELEVANCE: Clerodendrum cyrtophyllum Turcz has been used in traditional medicine for the treatment of various diseases. In spite of its therapeutic applications, research on its toxicity and teratogenicity is still limited. AIM OF THE STUDY: The study aimed to investigate the developmental toxicity of the ethanol extract of C. cyrtophyllum (EE) in zebrafish embryo model. MATERIAL AND METHODS: Major compounds from crude ethanol extract of Clerodendron cyrtophyllum Turcz leaves were determined using HPLC-DAD-Orbitrap-MS analysis. The developmental toxicity of EE were investigated using zebrafish embryo model. Zebrafish embryos at 6 h post-fertilization (hpf) were treated with EE at different concentrations. Egg coagulation, mortality, hatching, yolk sac oedema, pericardial oedema and teratogenicity were recorded each day for during a 5-day exposure. At time point 120 hpf, body length, pericardial area, heartbeat and yolk sac area were assessed. In order to elucidate molecular mechanisms for the developmental toxicity of EE, we further evaluated the effects of the EE on the expression of genes involved on signaling pathways affecting fish embryo's development such as heart development (gata5, myl7, myh6, has2, hand2, nkx 2.5), oxidative stress (cat, sod1, gpx4, gstp2), wnt pathway (beta-catenin, wnt3a, wnt5, wnt8a, wnt11), or cell apoptosis (p53, bax, bcl2, casp3, casp8, casp9, apaf-1, gadd45bb) using qRT-PCR analysis. RESULTS: Our results demonstrated that three major components including acteoside, cirsilineol and cirsilineol-4'-O-beta-D-glucopyranoside were identified from EE. EE exposure during 6- 96 h post-fertilization (hpf) at doses ranging from 80 - 200 mug/ml increased embryo mortality and reduced hatching rate. EE exposure at 20 and 40 mug/ml until 72 - 120 hpf induced a series of malformations, including yolk sac oedema, pericardial oedema, spine deformation, shorter body length. Based on two prediction models using a teratogenic index (TI), a 25% lethality concentration (LD25) and the no observed-adverse-effect level (NOAEL), EE is considered as teratogenic for zebrafish embryos with TI (LC50/EC50) and LD25/NOAEC values at 96 hpf reaching 3.87 and 15.73 respectively. The mRNA expression levels of p53, casp8, bax/bcl2, gstp2, nkx2.5, wnt3a, wnt11, gadd45bb and gata5 were significantly upregulated by EE exposure at 20 and 40 mug/ml while the expression of wnt5, hand2 and bcl2 were downregulated. CONCLUSIONS: These results provide evidence for toxicity effects of EE to embryo stages and provide an insight into the potential toxicity mechanisms on embryonic development.
Centre/Unité de recherche :
GIGA-I3 - Giga-Infection, Immunity and Inflammation - ULiège CART - Centre Interfacultaire d'Analyse des Résidus en Traces - ULiège
Disciplines :
Pharmacie, pharmacologie & toxicologie
Auteur, co-auteur :
Nguyen, Thu Hang
Nguyen, Phuc-Dam
Quetin-Leclercq, Joëlle
Muller, Marc ; Université de Liège - ULiège > Département des sciences de la vie > I3-Laboratory for Organogenesis and Regeneration
Ly Huong, Thu Hang
Pham, The Hai
Kestemont, Patrick
Langue du document :
Anglais
Titre :
Developmental Toxicity of Clerodendrum cyrtophyllum Turcz Ethanol Extract in Zebrafish Embryo
Alafiatayo, A.A., Lai, K.S., Syahida, A., Mahmood, M., Shaharuddin, N.A., Phytochemical evaluation, embryotoxicity, and teratogenic effects of curcuma longa extract on zebrafish (Danio rerio). Evidence-based complement. Alternative Med., 2019, 2019, 10.1155/2019/3807207.
Anderson, J., Carten, J., Farber, S., Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methos Cell. Biol. 101 (2011), 111–141, 10.1016/B978-0-12-387036-0.00005-0.
Brannen, K.C., Panzica-Kelly, J.M., Danberry, T.L., Augustine-Rauch, K.A., Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Res 89 (2010), 66–77, 10.1002/bdrb.20223.
Chen, J. Bin, Gao, H.W., Zhang, Y.L., Zhang, Y., Zhou, X.F., Li, C.Q., Gao, H.P., Developmental toxicity of diclofenac and elucidation of gene regulation in zebrafish (Danio rerio). Sci. Rep. 4 (2014), 1–7, 10.1038/srep04841.
Cheng, H.H., Wang, H.K., Ito, J., Bastow, K.F., Tachibana, Y., Nakanishi, Y., Xu, Z., Luo, T.Y., Lee, K.H., Cytotoxic pheophorbide-related compounds from Clerodendrum calamitosum and C. cyrtophyllum. J. Nat. Prod. 64 (2001), 915–919, 10.1021/np000595b.
Cheng, S.H., Wai, A.W.K., So, C.H., Wu, R.S.S., Cellular and molecular basis of cadmium-induced deformities in zebrafish embryos. Environ. Toxicol. Chem. 19 (2000), 3024–3031, 10.1002/etc.5620191223.
Cong Nhuong, L., Van Long, N., Dang Hoa, N., Le, Chemical constituents and antioxidant activity of flavonoids from Clerodendron cyrtophyllum Turcz. Vietnamese Pharm. J., 46(2006), 2006.
Dell'Aquila, M.E., Bogliolo, L., Russo, R., Martino, N.A., Filioli Uranio, M., Ariu, F., Amati, F., Sardanelli, A.M., Linsalata, V., Ferruzzi, M.G., Cardinali, A., Minervini, F., Prooxidant effects of verbascoside, a bioactive compound from olive oil mill wastewater, on in vitro developmental potential of ovine prepubertal oocytes and bioenergetic/oxidative stress parameters of fresh and vitrified oocytes. BioMed Res. Int., 2014, 2014, 10.1155/2014/878062.
Eimon, P.M., Ashkenazi, A., The zebrafish as a model organism for the study of apoptosis. Apoptosis 15 (2010), 331–349, 10.1007/s10495-009-0432-9.
Etemad, L., Zafari, R., Hosseinzadeh, H., Teratogenic effect of verbascoside, main constituent of lippia citriodora leaves, in mice. Iran. J. Pharm. Res. 15 (2016), 521–525, 10.22038/ajp.2016.5128.
Gao, X.Y., Li, K., Jiang, L.L., He, M.F., Pu, C.H., Kang, D., Xie, J., Developmental toxicity of auranofin in zebrafish embryos. J. Appl. Toxicol. 37 (2017), 602–610, 10.1002/jat.3410.
Grosser, T., Yusuff, S., Cheskis, E., Pack, M.A., FitzGerald, G.A., Developmental expression of functional cyclooxygenases in zebrafish. Proc. Natl. Acad. Sci. U.S.A. 99 (2002), 8418–8423, 10.1073/pnas.112217799.
Han, Y., Zhang, J. pu, Qian, J. qin, Hu, C. qin, Cardiotoxicity evaluation of anthracyclines in zebrafish (Danio rerio). J. Appl. Toxicol. 35 (2015), 241–252, 10.1002/jat.3007.
Hong, E.J., Jeung, E.B., Assessment of developmental toxicants using human embryonic stem cells. Toxicol. Res. 29 (2013), 221–227, 10.5487/TR.2013.29.4.221.
Huang, D., Li, H., He, Q., Yuan, W., Chen, Z., Yang, H., Developmental toxicity of diethylnitrosamine in zebrafish embryos/juveniles related to excessive oxidative stress. Water Air Soil Pollut., 229, 2018, 10.1007/s11270-018-3739-8.
Illamola, S.M., Amaeze, O.U., Krepkova, L.V., Birnbaum, A.K., Karanam, A., Job, K.M., Bortnikova, V.V., Sherwin, C.M.T., Enioutina, E.Y., Use of herbal medicine by pregnant women: what physicians need to know. Front. Pharmacol. 10 (2019), 1–16, 10.3389/fphar.2019.01483.
Kar, P., Goyal, A.K., Das, A.P., Sen, A., Antioxidant and pharmaceutical potential of Clerodendrum L.: an overview. Int. J. Green Pharm., 2014, 210–216.
Kelm, M.A., Nair, M.G., Strasburg, G.M., DeWitt, D.L., Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 7 (2000), 7–13, 10.1016/S0944-7113(00)80015-X.
Lackmann, C., Martinez, M., Rainieri, S., Barranco, A., Hollert, H., Spirhanzlova, P., Velki, M., Seiler, T., Chemosphere Novel procedures for whole organism detection and quantification of fluorescence as a measurement for oxidative stress in zebrafish (Danio rerio) larvae. Chemosphere 197 (2018), 200–209, 10.1016/j.chemosphere.2018.01.045.
Li, J., Zhang, Y., Liu, K., He, Q., Sun, C., Han, J., Han, L., Tian, Q., Xiaoaiping induces developmental toxicity in Zebrafish Embryos through activation of ER stress, apoptosis and the wnt pathway. Front. Pharmacol. 9 (2018), 1–12, 10.3389/fphar.2018.01250.
Nguyen, T.H., Le, H.D., Kim, T.N.T., The, H.P., Nguyen, T.M., Cornet, V., Lambert, J., Kestemont, P., Anti–inflammatory and antioxidant properties of the ethanol extract of Clerodendrum cyrtophyllum turcz in copper sulfate‐induced inflammation in zebrafish. Antioxidants 9 (2020), 1–20, 10.3390/antiox9030192.
Nguyen, T.H., Nachtergael, A., Cornet, V., Kestemont, P., Anti-inflammatory properties of the ethanol extract from Clerodendrum cyrtophyllum Turcz based on in vitro and in vivo studies. J. Ethnopharmacol., 254, 2020, 112739, 10.1016/j.jep.2020.112739.
Nishimura, Y., Inoue, A., Sasagawa, S., Koiwa, J., Kawaguchi, K., Kawase, R., Maruyama, T., Kim, S., Tanaka, T., Using zebrafish in systems toxicology for developmental toxicity testing. Congenital. Anom. 56 (2016), 18–27, 10.1111/cga.12142.
OECD. Test no 236: fish embryo toxicity test (FET test). Organ. Econ. Co-Operation Dev., 1–22, 2013, 10.1787/9789264203709-en.
Pandur, P., Läsche, M., Eisenberg, L.M., Kühl, M., Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418 (2002), 636–641, 10.1038/nature00921.
Pathak, G., Singh, S., Kumari, P., Hussain, Y., Raza, W., Luqman, S., Meena, A., Cirsilineol inhibits proliferation of lung squamous cell carcinoma by inducing ROS mediated apoptosis. Food Chem. Toxicol., 143, 2020, 111550, 10.1016/j.fct.2020.111550.
Peters, A.K., Steemans, M., Hansen, E., Mesens, N., Verheyen, G.R., Vanparys, P., Evaluation of the embryotoxic potency of compounds in a newly revised high throughput embryonic stem cell test. Toxicol. Sci. 105 (2008), 342–350, 10.1093/toxsci/kfn126.
Qian, L., Cui, F., Yang, Y., Liu, Y., Qi, S., Wang, C., Mechanisms of developmental toxicity in zebrafish embryos (Danio rerio) induced by boscalid. Sci. Total Environ. 634 (2018), 478–487, 10.1016/j.scitotenv.2018.04.012.
Reiter, J.F., Alexander, J., Rodaway, A., Yelon, D., Patient, R., Holder, N., Stainier, D.Y.R., Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 13 (1999), 2983–2995, 10.1101/gad.13.22.2983.
Schindler, Y.L., Garske, K.M., Wang, J., Firulli, B.A., Firulli, A.B., Poss, K.D., Yelon, D., Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Dev 141 (2014), 3112–3122, 10.1242/dev.106336.
Selderslaghs, I.W.T., Blust, R., Witters, H.E., Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod. Toxicol. 33 (2012), 142–154, 10.1016/j.reprotox.2011.08.003.
Shi, X., Zhou, B., The role of Nrf 2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol. Sci. 115 (2010), 391–400, 10.1093/toxsci/kfq066.
Targoff, K.L., Schell, T., Yelon, D., Nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Dev. Biol. 322 (2008), 314–321, 10.1016/j.ydbio.2008.07.037.
Xia, L., Zheng, L., Zhou, J.L., Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio). Chemosphere 182 (2017), 416–425, 10.1016/j.chemosphere.2017.05.054.
Youle, R.J., Strasser, A., The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9 (2008), 47–59, 10.1038/nrm2308.
Zaidi, S., Brueckner, Martina, Genetics and genomics of congenital heart disease. Circ Res, PMC 120 (2018), 923–940, 10.1161/CIRCRESAHA.116.309140.
Zhang, K., Yuan, G., Werdich, A.A., Zhao, Y., Ibuprofen and diclofenac impair the cardiovascular development of zebrafish (Danio rerio) at low concentrations. Environ. Pollut., 258, 2020, 113613, 10.1016/j.envpol.2019.113613.
Zhang, Q., Cheng, J., Xin, Q., Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 24 (2015), 707–719, 10.1007/s10646-015-1417-9.
Zhou, J., Yang, Q., Zhu, X., Lin, T., Hao, D., Xu, J., Antioxidant activities of clerodendrum cyrtophyllum turcz leaf extracts and their major components. PLoS One 15 (2020), 1–15, 10.1371/journal.pone.0234435.
Zhou, J., Zheng, X., Yang, Q., Liang, Z., Li, D., Yang, X., Xu, J., Optimization of ultrasonic-assisted extraction and radical-scavenging capacity of phenols and flavonoids from clerodendrum cyrtophyllum turcz leaves. PLoS One 8 (2013), 1–8, 10.1371/journal.pone.0068392.
Zoupa, M., Machera, K., Zebrafish as an alternative vertebrate model for investigating developmental toxicity—the triadimefon example. Int. J. Mol. Sci., 18, 2017, 10.3390/ijms18040817.