Boyce index; bryophytes; local adaptation; niche conservatism; niche similarity; species distribution models; taxonomy
Abstract :
[en] Aim: Mounting evidence suggests that failure of species distribution models to integrate local adaptation hinders our ability to predict distribution ranges, raising the
<br />question of whether modelling should be performed at the level of species (clade
<br />models) or intraspecific lineages (subclade models), characterized by the restricted
<br />availability of occurrence points. While Ensembles of Small Models (ESMs) offer an
<br />attractive framework for small datasets, their evaluation remains critical. We address
<br />these issues in the case of very small datasets inherent to subclade models and discuss
<br />which modelling strategy should be applied based on niche overlap among lineages.
<br />Location: Sweden.
<br />Taxon: Mosses.
<br />Methods: Ensembles of Small Models were evaluated by null models built from randomly sampled presence points. We compared the extent of suitable area predicted
<br />by the projections of clade and subclade models. Niche overlap was quantified using
<br />Schoener's D and Hellinger'sImetrics, and the significance of these metrics in terms
<br />of niche conservatism or divergence was assessed by similarity tests.
<br />Results: We introduced a simple procedure for evaluating ESMs based on the pooling of the statistics used to assess model accuracy from the replicates. Despite fairly
<br />high AUC and TSS values, 2 of the 23 subclade models did not perform better than
<br />null models and should be discarded. Combined predictions from subclade models
<br />contributed, on average, five times more than clade models to the total suitable area
<br />predicted by the combination of subclade and clade models. The D and I metrics averaged 0.45 and 0.71, with evidence for niche conservatism in half of the species and
<br />no signal for niche divergence.
<br />Main conclusions: In addition to the assessment of ESM accuracy based on the simple procedure described here, we recommend that ESMs should be systematically
<br />evaluated against null models. Lumping or splitting occurrence data at the intraspecific level substantially impacted model projections. Given the poor performance of
<br />models based on small datasets, even when employing ESMs, we pragmatically suggest that, in the absence of evidence for niche divergence during diversification of
<br />closely related intraspecific lineages, SDMs should be based on all available occurrence data at the species level.
Collart, Flavien ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Hedenäs, Lars
Brönnimann, Olivier
Guisan, Antoine ✱
Vanderpoorten, Alain ✱; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
✱ These authors have contributed equally to this work.
Language :
English
Title :
Intraspecific differentiation: Implications for niche and distribution modelling
Publication date :
2021
Journal title :
Journal of Biogeography
ISSN :
0305-0270
eISSN :
1365-2699
Publisher :
Blackwell, Oxford, United Kingdom
Volume :
48
Pages :
415-426
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture Carl Tryggers Stiftelse för Vetenskaplig Forskning
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anderson, R. P., & Raza, A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37, 1378–1393. https://doi.org/10.1111/j.1365-2699.2010.02290.x
Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R. B., Zimmermann, N. E., & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Science Advance, 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858
Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010
Barbosa, A. M., Brown, J. A., Jimenez-Valverde, A., & Real, R. (2016). modEvA: Model evaluation and analysis. R package version 1.3.2. Retrieved from https://CRAN.R-project.org/package=modEvA
Bivand, R. S., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). Springer.
Bradter, U., Mair, L., Jonsson, M., Knape, J., Singer, A., & Snall, T. (2018). Can opportunistically collected Citizen Science data fill a data gap for habitat suitability models of less common species? Methods in Ecology and Evolution, 9, 1667–1678. https://doi.org/10.1111/2041-210X.13012
Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6(10), 1210–1218. https://doi.org/10.1111/2041-210X.12403
Breiner, F. T., Nobis, M. P., Bergamini, A., & Guisan, A. (2018). Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution, 9(4), 802–808. https://doi.org/10.1111/2041-210X.12957
Broennimann, O., Di Cola, V., & Guisan, A. (2017). ecospat: Spatial ecology miscellaneous methods. ‘R package version 2.2.0’. https://CRAN.R-project.org/package=ecospat.
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Cacciapaglia, C., & van Woesik, R. (2018). Marine species distribution modelling and the effects of genetic isolation under climate change. Journal of Biogeography, 45, 154–163. https://doi.org/10.1111/jbi.13115
Castellanos, A. A., Huntley, J. W., Voelker, G., & Lawing, A. M. (2019). Environmental filtering improves ecological niche models across multiple scales. Methods in Ecology and Evolution, 10, 481–492. https://doi.org/10.1111/2041-210X.13142
Chardon, N. I., Pironon, S., Peterson, M. L., & Doak, D. F. (2020). Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide-spread plant species. Ecography, 42(1), 60–74. https://doi.org/10.1111/ecog.04630
Damayanti, L., Muñoz, J., Wicke, S., Symmank, L., Shaw, B., Frahm, J. P., & Quandt, D. (2012). Common but new: Bartramia rosamrosiae, a "new" widespread species of apple mosses (Bartramiales, Bryophytina) from the Mediterranean and western North America. Phytotaxa, 73, 37–59. https://doi.org/10.11646/phytotaxa.73.1.6.
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D'Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). Ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. https://doi.org/10.1111/ecog.02671
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Egge, J. J. D., & Simons, A. M. (2006). The challenge of truly cryptic diversity: Diagnosis and description of a new madtom catfish (Ictaluridae: Noturus). Zoologica Scripta, 35, 581–595. https://doi.org/10.1111/j.1463-6409.2006.00247.x
Elith, J., Kearney, M., & Phillips, S. J. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Friedman, J. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
Graham, J., Farr, G., Hedenäs, L., Devez, A., & Watts, M. J. (2019). Using water chemistry to define ecological preferences within the moss genus Scorpidium, from Wales, UK. Journal of Bryology, 41(3), 197–204. https://doi.org/10.1080/03736687.2019.1603416.
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: Insights from biological invasions. Trends in Ecology and Evolution, 29, 260–269. https://doi.org/10.1016/j.tree.2014.02.009
Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models. Cambridge University Press.
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., … Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424–1435. https://doi.org/10.1111/ele.12189
Hällfors, M. H., Liao, J., Dzurisin, J., Grundel, R., Hyvärinen, M., Towle, K., Wu, G. C., & Hellmann, J. J. (2016). Addressing potential local adaptation in species distribution models: Implications for conservation under climate change. Ecological Applications, 26(4), 1154–1169. https://doi.org/10.1890/15-0926
Hamid, M., Khuroo, A. A., Charles, B., Ahmad, R., Singh, C. P., & Aravind, N. A. (2019). Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodiversity and Conservation, 28(8–9), 2345–2370. https://doi.org/10.1007/s10531-018-1641-8
Hedenäs, L. (2016). Intraspecific diversity matters in bryophyte conservation – internal transcribed spacer and rpl16 G2 intron variation in some European mosses. Journal of Bryology, 38(3), 173–182. https://doi.org/10.1080/03736687.2016.1145522.
Hedenäs, L. (2017). Scandinavian Oncophorus (Bryopsida, Oncophoraceae): Species, cryptic species, and intraspecific variation. European Journal of Taxonomy, 315, 1–34. https://doi.org/10.5852/ejt.2017.315
Hedenäs, L. (2018). Conservation status of the two cryptic species of Hamatocaulis vernicosus (Bryophyta) in Sweden. Journal of Bryology, 40(4), 307–315. https://doi.org/10.1080/03736687.2018.1513712.
Hedenäs, L. (2019). On the frequency of northern and mountain genetic variants of widespread species: Essential biodiversity information in a warmer world. Botanical Journal of the Linnean Society, 191(4), 440–474. https://doi.org/10.1093/botlinnean/boz061
Hedenäs, L. (2020) Cryptic speciation revealed in Scandinavian Racomitrium lanuginosum (Hedw.) Brid. (Grimmiaceae). Journal of Bryology, 42, 1–11. https://doi.org/10.1080/03736687.2020.1722923.
Hedenäs, L., Désamoré, A., Laenen, B., Papp, B., Quandt, D., Gonzalez-Mancebo, J. M., & Stech, M. (2014). Three species for the price of one within the moss Homalothecium sericeum s.l. Taxon, 63(2), 249–257. https://doi.org/10.12705/632.16.
Hijmans, R. J. (2019). raster: Geographic data analysis and modeling. R package version 2.8-19. Retrieved from https://CRAN.R-project.org/package=raster
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276
Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017). Dismo: Species distribution modeling. Retrieved from https://cran.r-project.org/package=dismo
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., & Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199, 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017
Hutsemékers, V., Hardy, O. J., Mardulyn, P., Shaw, A. J., & Vanderpoorten, A. (2010). Macroecological patterns of genetic structure and diversity in the aquatic moss Platyhypnidium riparioides. New Phytologist, 185, 852–864. https://doi.org/10.1111/j.1469-8137.2009.03094.x
Hutsemékers, V., Vieira, C. C., Ros, R. M., Huttunen, S., & Vanderpoorten, A. (2012). Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss Rhynchostegium riparioides s.l. Molecular Phylogenetics & Evolution, 62, 748–755. https://doi.org/10.1016/j.ympev.2011.11.014
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. Springer.
Jiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21, 498–507. https://doi.org/10.1111/j.1466-8238.2011.00683.x
Jiménez-Valverde, A. (2020). Sample size for the evaluation of presence-absence models. Ecological Indicators, 114, https://doi.org/10.1016/j.ecolind.2020.106289
Johnson, M. G., Granath, G., Tahvanainen, T., Pouliot, R., Stenøien, H. K., Rochefort, L., & Shaw, A. J. (2015). Evolution of niche preference in Sphagnum peat mosses. Evolution, 69, 90–103. https://doi.org/10.1111/evo.12547.
Lemus-Canovas, M., Lopez-Bustins, J. A., Martin-Vide, J., & Royé, D. (2019). synoptReg: An R package for computing a synoptic climate classification and a spatial regionalization of environmental data. Environmental Modelling & Software, 118, 114–119. https://doi.org/10.1016/j.envsoft.2019.04.006
Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40, 778–789. https://doi.org/10.1111/jbi.12058
Liu, C., White, M., & Newell, G. (2016). On the selection of thresholds for predicting species occurrence with presence-only data. Ecology and Evolution, 6, 337–348. https://doi.org/10.1002/ece3.1878
Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
Lobo, J. M., & Tognelli, M. F. (2011). Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. Journal for Nature Conservation, 19, 1–7. https://doi.org/10.1016/j.jnc.2010.03.002
Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J., & Guisan, A. (2010). Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological Conservation, 143(11), 2647–2657. https://doi.org/10.1016/j.biocon.2010.07.007
Louppe, V., Leroy, B., Herrel, A., & Veron, G. (2019). Current and future climatic regions favourable for a globally introduced wild carnivore, the raccoon Procyon lotor. Scientific Reports, 9(1), 9174. https://doi.org/10.1038/s41598-019-45713-y
Magdy, M., Werner, O., McDaniel, S. F., Goffinet, B., & Ros, R. M. (2016). Genomic scanning using AFLP to detect loci under selection in the moss Funaria hygrometrica along a climate gradient in the Sierra Nevada Mountains, Spain. Plant Biology, 18, 280–288. https://doi.org/10.1111/plb.12381.
Maguire, K. C., Shinneman, D. J., Potter, K. M., & Hipkins, V. D. (2018). Intraspecific niche models for Ponderosa pine (Pinus ponderosa) suggest potential variability in population-level response to climate change. Systematic Biology, 67, 965–978. https://doi.org/10.1093/sysbio/syy017
Marcer, A., Méndez-Vigo, B., Alonso-Blanco, C., & Picó, F. X. (2016). Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecology and Evolution, 6(7), 2084–2097. https://doi.org/10.1002/ece3.2010.
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. (2009). Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions, 15, 59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x.
Mateo, R. G., Broennimann, O., Petitpierre, B., Muñoz, J., van Rooy, J., Guisan, A., & Vanderpoorten, A. (2015). What is the potential of spread in invasive bryophytes? Ecography, 38, 480–487. https://doi.org/10.1111/ecog.01014.
McInerny, G., & Etienne, R. S. (2013). Niche’ or ‘distribution’ modelling? A response to Warren. Trends in Ecology & Evolution, 28(4), 191–192. https://doi.org/10.1016/j.tree.2013.01.007.
Medina, R., Johnson, M. G., Liu, Y., Wickett, N. J., Shaw, A. J., & Goffinet, B. (2019). Phylogenomic delineation of Physcomitrium (Bryophyta: Funariaceae) based on targeted sequencing of nuclear exons and their flanking regions rejects the retention of Physcomitrella, Physcomitridium and Aphanorrhegma. Journal of Systematics and Evolution, 57, 404–417. https://doi.org/10.1111/jse.12516.
Medina, R., Lara, F., Goffinet, B., Garilleti, R., & Mazimpaka, V. (2012). Integrative taxonomy successfully resolves the pseudo-cryptic complex of the disjunct epiphytic moss Orthotrichum consimile s.l. (Orthotrichaceae). Taxon, 61(6), 1180–1198. https://doi.org/10.1002/tax.616002.
Medina, R., Lara, F., Goffinet, B., Garilleti, R., & Mazimpaka, V. (2013). Unnoticed diversity within the disjunct moss Orthotrichum tenellum sl validated by morphological and molecular approaches. Taxon, 62(6), 1133–1152. https://doi.org/10.12705/626.15.
Mikulášková, E., Hájek, M., Veleba, A., Johnson, M. G., Hájek, T., & Shaw, A. J. (2015). Local adaptations in bryophytes revisited: The genetic structure of the calcium-tolerant peatmoss Sphagnum warnstorfii along geographic and pH gradients. Ecology and Evolution, 5(1), 229–242. https://doi.org/10.1002/ece3.1351.
Mod, H. K., Heikkinen, R. K., le Roux, P. C., Väre, H., & Luoto, M. (2016). Contrasting effects of biotic interactions on richness and distribution of vascular plants, bryophytes and lichens in an arctic–alpine landscape. Polar Biology, 39(4), 649–657. https://doi.org/10.1007/s00300-015-1820-y.
Mod, H. K., Heikkinen, R. K., le Roux, P. C., Wisz, M. S., & Luoto, M. (2016). Impact of biotic interactions on biodiversity varies across a landscape. Journal of Biogeography, 43(12), 2412–2423. https://doi.org/10.1111/jbi.12794.
Moto-Vargas, C., & Rojas-Soto, O. R. (2016). Taxonomy and ecological niche modeling: Implications for the conservation of wood partridges (genus Dendrortyx). Journal of Nature Conservation, 29, 1–13. https://doi.org/10.1016/j.jnc.2015.10.003
Oney, B., Reineking, B., O’Neill, G., & Kreyling, J. (2013). Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecology and Evolution, 3, 437–449. https://doi.org/10.1002/ece3.426.
Patiño, J., Hedenäs, L., Dirkse, G., Ignatov, M., Papp, B., Müller, F., & Vanderpoorten, A. (2017). Species delimitation in the recalcitrant moss genus Rhynchostegiella (Brachytheciaceae). Taxon, 66, 293–308. https://doi.org/10.12705/662.1.
Patiño, J., & Vanderpoorten, A. (2018). Bryophyte biogeography. Critical Reviews in Plant Sciences, 37, 175–209. https://doi.org/10.1080/07352689.2018.1482444
Pearman, P. B., D’Amen, M., Graham, C. H., Thuiller, W., & Zimmermann, E. (2010). Within-taxon niche structure: Niche conservatism, divergence and predicted effects of climate change. Ecography, 33, 990–1003. https://doi.org/10.1111/j.1600-0587.2010.06443.x
Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R News, 5(2), 9–13.
Peterson, A. T. (2011). Ecological niche conservatism: A time-structured review of evidence. Journal of Biogeography, 38, 817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x
Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10(2), 102–107. https://doi.org/10.4322/natcon.2012.019
Peterson, A. T., Soberón, J., & Sánchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285, 1265–1267. https://doi.org/10.1126/science.285.5431.1265
Peterson, M. L., Doak, D. F., & Morris, W. F. (2019). Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Global Change Biology, 25(3), 775–793. https://doi.org/10.1111/gcb.14562
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19, 181–197. https://doi.org/10.1890/07-2153.1.
Piatkowski, B. T., & Shaw, A. J. (2019). Functional trait evolution in Sphagnum peat mosses and its relationship to niche construction. New Phytologist, 223, 939–949. https://doi.org/10.1111/nph.15825.
Pisa, S., Werner, O., Vanderpoorten, A., Magdy, M., & Ros, R. M. (2013). Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae). American Journal of Botany, 100, 2000–2008. https://doi.org/10.3732/ajb.1300100.
Qiao, H., Escobar, L. E., & Peterson, A. T. (2017). Accessible areas in ecological niche comparisons of invasive species: Recognized but still overlooked. Scientific Reports, 7, 1213. https://doi.org/10.1038/s41598-017-01313-2.
Qiao, H., Peterson, A. T., Ji, L., & Hu, J. (2017). Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modelling. Methods in Ecology and Evolution, 8, 1804–1812. https://doi.org/10.1111/2041-210X.12832.
Raxworthy C. J., Ingram C. M., Rabibisoa N., Pearson R. G. (2007). Applications of Ecological Niche Modeling for Species Delimitation: A Review and Empirical Evaluation Using Day Geckos (Phelsuma) from Madagascar. Systematic Biology, 56, (6), 907–923. http://doi.org/10.1080/10635150701775111.
R Core Team (2019). R: A language and environment for statistical computing. Retrieved from https://www.r-project.org/
Schwarzer, C., & Joshi, J. (2017). Parallel adaptive responses to abiotic but not biotic conditions after cryptic speciation in European peat moss Sphagnum magellanicum Brid. Perspectives in Plant Ecology, Evolution and Systematics, 26, 14–27. https://doi.org/10.1016/j.ppees.2017.03.001.
Shaw, A. J. (1985). The relevance of ecology to species concepts in bryophytes. The Bryologist, 88(3), 199–206. https://www.jstor.org/stable/3243029.
Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H., & Warren, D. (2019). Niche estimation above and below the species level. Trends in Ecology & Evolution, 34(3), 260–273. https://doi.org/10.1016/j.tree.2018.10.012
Somedi, I., Lepesi, N., & Botta-Dukát, Z. (2017). Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecology and Evolution, 7, 863–872. https://doi.org/10.1002/ece3.2654
Sork, V. L. (2017). Genomic studies of local adaptation in natural plant populations. Journal of Heredity, 109(1), 3–15. https://doi.org/10.1093/jhered/esx091
Struck, T. H., Feder, J. L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V. I., Kistenich, S., Larsson, K.-H., Liow, L. H., Nowak, M. D., Stedje, B., Bachmann, L., & Dimitrov, D. (2018). Finding evolutionary processes hidden in cryptic species. Trends in Ecology and Evolution, 33(3), 153–163. https://doi.org/10.1016/j.tree.2017.11.007
Szövényi, P., Hock, Z., Korpelainen, H., & Shaw, A. J. (2009). Spatial pattern of nucleotide polymorphism indicates molecular adaptation in the bryophyte Sphagnum fimbriatum. Molecular Phylogenetics and Evolution, 53, 277–286. https://doi.org/10.1016/j.ympev.2009.06.007
Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2019). biomod2: Ensemble platform for species distribution modeling. R package version 3.3-7.1. Retrieved from https://CRAN.R-project.org/package=biomod2
Udd, D., Sundberg, S., & Rydin, H. (2016). Multi-species competition experiments with peatland bryophytes. Journal of Vegetation Science, 27(1), 165–175. https://doi.org/10.1111/jvs.12322
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito-Garzón, M., Cornwell, W., Gianoli, E., van Kleunen, M., Naya, D. E., Nicotra, A. B., Poorter, H., & Zavala, M. A. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17(11), 1351–1364. https://doi.org/10.1111/ele.12348
van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39, 542–552. https://doi.org/10.1111/ecog.01509
Vanderpoorten, A., & Durwael, L. (1999). Trophic response curves in lowland calcareous streams aquatic bryophytes. The Bryologist, 102, 720–728. https://www.jstor.org/stable/3244258.
Vanderpoorten, A., & Shaw, A. J. (2010). The application of molecular data to the phylogenetic delimitation of species in bryophytes: A note of caution. Phytotaxa, 9, 229–237. https://doi.org/10.11646/phytotaxa.9.1.12
Varela, S., Anderson, R. P., Valdés, R. G., & Fernández-González, F. (2014). Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 37, 1084–1091. https://doi.org/10.1111/j.1600-0587.2013.00441.x
Vigalondo, B., Garilleti, R., Vanderpoorten, A., Patiño, J., Draper, I., Calleja, J. A., Lara, F. (2019). Do mosses really exhibit larger distribution ranges than angiosperms? Insights from the study of the Lewinskya affinis complex. Molecular Phylogenetics and Evolution, 140, 106598. https://doi.org/10.1016/j.ympev.2019.106598.
Vigalondo, B., Lara, F., Draper, I., Valcarcel, V., Garilleti, R., & Mazimpaka, V. (2016). Is it really you, Orthotrichum acuminatum? Ascertaining a new case of intercontinental disjunction in mosses. Botanical Journal of the Linnean Society, 180, 30–49. https://doi.org/10.1111/boj.12360.
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
Wiens, J. J. (2004). Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution, 58, 193–197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.x
Wiens, J. J., & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Reviews of Ecology, Evolution and Systematics, 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
Yannic, G., Pellissier, L., Ortego, J., Lecomte, N., Couturier, S., Cuyler, C., Dussault, C., Hundertmark, K. J., Irvine, R. J., Jenkins, D. A., Kolpashikov, L., Mager, K., Musiani, M., Parker, K. L., Røed, K. H., Sipko, T., Þórisson, S. G., Weckworth, B. V., Guisan, A., … Côté, S. D. (2014). Genetic diversity in caribou linked to past and future climate change. Nature Climate Change, 4, 132–137. https://doi.org/10.1038/nclimate2074
Yu, Y., Pócs, T., Schäfer-Verwimp, A., Heinrichs, J., Zhu, R.-L., & Schneider, H. (2013). Evidence for rampant homoplasy in the phylogeny of the epiphyllous liverwort genus Cololejeunea (Lejeuneaceae). Systematic Botany, 38(3), 553–563. https://www.jstor.org/stable/24546084.
Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J. J., Leitão, P. J., Park, D. S., Peterson, A. T., Rapacciuolo, G., Schmatz, D. R., Schröder, B., Serra-Diaz, J. M., Thuiller, W., … Merow, C. (2020). A standard protocol for reporting species distribution models. Ecography, 43(9), 1261–1277. https://doi.org/10.1111/ecog.04960
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.