B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241103
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO, Phys. Rev. D 93, 122003 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.122003
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), Binary Black Hole Mergers in the First Advanced LIGO Observing Run, Phys. Rev. X 6, 041015 (2016). PRXHAE 2160-3308 10.1103/PhysRevX.6.041015
A. H. Nitz, I. W. Harry, J. L. Willis, C. M. Biwer, D. A. Brown, L. P. Pekowsky, T. Dal Canton, A. R. Williamson, T. Dent, C. D. Capano, T. J. Massinger, A. K. Lenon, A. B. Nielsen, and M. Cabero, PyCBC Software, http://github.com/ligo-cbc/pycbc.
S. A. Usman, The PyCBC Search for Gravitational Waves from Compact Binary Coalescence, Classical Quantum Gravity 33, 215004 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/21/215004
S. Sachdev, The GstLAL Search Analysis Methods for Compact Binary Mergers in Advanced LIGO's Second and Advanced Virgo's First Observing Runs, arXiv:1901.08580.
C. Messick, Analysis Framework for the Prompt Discovery of Compact Binary Mergers in Gravitational-Wave Data, Phys. Rev. D 95, 042001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.042001
S. Klimenko, Method for Detection and Reconstruction of Gravitational Wave Transients with Networks of Advanced Detectors, Phys. Rev. D 93, 042004 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.042004
A. Krolak and B. F. Schutz, Coalescing Binaries-Probe of the Universe, Gen. Relativ. Gravit. 19, 1163 (1987). GRGVA8 0001-7701 10.1007/BF00759095
B. P. Abbott (Virgo, LIGO Scientific Collaboration), Search for Sub-Solar Mass Ultracompact Binaries in Advanced LIGO's First Observing Run, arXiv:1808.04771.
The event GW151012 was previously referred to as LVT151012. Here, we retire the LVT nomenclature; all candidate events with an estimated FAR of less than 1 per 30 days and a probability of (Equation presented) of being of astrophysical origin [see Eq. (10) for the definition] are henceforth denoted with the GW prefix. All other candidates are referred to as marginal.
B. P. Abbott (VIRGO, LIGO Scientific Collaboration), GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101
B. P. Abbott (Virgo, LIGO Scientific Collaboration), GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119, 141101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.141101
B. P. Abbott (Virgo, LIGO Scientific Collaboration), GW170608: Observation of a 19-Solar-Mass Binary Black Hole Coalescence, Astrophys. J. 851, L35 (2017). 10.3847/2041-8213/aa9f0c
B. P. Abbott (Virgo, LIGO Scientific Collaboration), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101
B. F. Schutz, Networks of Gravitational Wave Detectors and Three Figures of Merit, Classical Quantum Gravity 28, 125023 (2011). CQGRDG 0264-9381 10.1088/0264-9381/28/12/125023
S. Fairhurst, Source Localization with an Advanced Gravitational Wave Detector Network, Classical Quantum Gravity 28, 105021 (2011). CQGRDG 0264-9381 10.1088/0264-9381/28/10/105021
B. P. Abbott [GROND, SALT Group, OzGrav, DFN, INTEGRAL, Virgo, Insight-Hxmt, MAXI Team, Fermi-LAT, J-GEM, RATIR, IceCube, CAASTRO, LWA, ePESSTO, GRAWITA, RIMAS, SKA South Africa/MeerKAT, H.E.S.S., 1M2H Team, IKI-GW Follow-up, Fermi GBM, Pi of Sky, DWF (Deeper Wider Faster Program), Dark Energy Survey, MASTER, AstroSat Cadmium Zinc Telluride Imager Team, Swift, Pierre Auger, ASKAP, VINROUGE, JAGWAR, Chandra Team at McGill University, TTU-NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3, TOROS, Pan-STARRS, NuSTAR, ATLAS Telescopes, BOOTES, CaltechNRAO, LIGO Scientific, High Time Resolution Universe Survey, Nordic Optical Telescope, Las Cumbres Observatory Group, TZAC Consortium, LOFAR, IPN, DLT40, Texas Tech University, HAWC, ANTARES, KU, Dark Energy Camera GW-EM, CALET, Euro VLBI Team, ALMA Collaboration], Multi-Messenger Observations of a Binary Neutron Star Merger, Astrophys. J. 848, L12 (2017). 10.3847/2041-8213/aa91c9
B. P. Abbott (LIGO Scientific, Virgo Collaboration), Low-Latency Gravitational Wave Alerts for Multi-Messenger Astronomy during the Second Advanced LIGO and Virgo Observing Run, Astrophys. J. 875, 161 (2019). 10.3847/1538-4357/ab0e8f
P. Ajith, Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Non-Precessing Spins, Phys. Rev. Lett. 106, 241101 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.241101
L. Santamaría, Matching Post-Newtonian and Numerical Relativity Waveforms: Systematic Errors and a New Phenomenological Model for Non-Precessing Black Hole Binaries, Phys. Rev. D 82, 064016 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.064016
M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms, Phys. Rev. Lett. 113, 151101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.151101
S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza, and A. Bohé, Frequency-Domain Gravitational Waves from Nonprecessing Black-Hole Binaries. II. A Phenomenological Model for the Advanced Detector Era, Phys. Rev. D 93, 044007 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044007
Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H. Mroué, H. P. Pfeiffer, M. A. Scheel, and B. Szilágyi, Inspiral-Merger-Ringdown Waveforms of Spinning, Precessing Black-Hole Binaries in the Effective-One-Body Formalism, Phys. Rev. D 89, 084006 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.084006
A. Taracchini, Effective-One-Body Model for Black-Hole Binaries with Generic Mass Ratios and Spins, Phys. Rev. D 89, 061502 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.061502
A. Bohé, An Improved Effective-One-Body Model of Spinning, Nonprecessing Binary Black Holes for the Era of Gravitational-Wave Astrophysics with Advanced Detectors, Phys. Rev. D 95, 044028 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.044028
S. Babak, A. Taracchini, and A. Buonanno, Validating the Effective-One-Body Model of Spinning, Precessing Binary Black Holes against Numerical Relativity, Phys. Rev. D 95, 024010 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.024010
T. Hinderer, Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach, Phys. Rev. Lett. 116, 181101 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.181101
T. Dietrich, Matter Imprints in Waveform Models for Neutron Star Binaries: Tidal and Self-Spin Effects, arXiv:1804.02235.
A. Nagar, Time-Domain Effective-One-Body Gravitational Waveforms for Coalescing Compact Binaries with Nonprecessing Spins, Tides and Self-Spin Effects, Phys. Rev. D 98, 104052 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.104052
L. Blanchet, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational Wave Forms from Inspiralling Compact Binaries to Second Post-Newtonian Order, Classical Quantum Gravity 13, 575 (1996). CQGRDG 0264-9381 10.1088/0264-9381/13/4/002
T. Damour, P. Jaranowski, and G. Schaefer, Dimensional Regularization of the Gravitational Interaction of Point Masses, Phys. Lett. B 513, 147 (2001). PYLBAJ 0370-2693 10.1016/S0370-2693(01)00642-6
L. Blanchet, T. Damour, G. Esposito-Farese, and B. R. Iyer, Dimensional Regularization of the Third Post-Newtonian Gravitational Wave Generation from Two Point Masses, Phys. Rev. D 71, 124004 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.124004
A. Buonanno, B. Iyer, E. Ochsner, Y. Pan, and B. S. Sathyaprakash, Comparison of Post-Newtonian Templates for Compact Binary Inspiral Signals in Gravitational-Wave Detectors, Phys. Rev. D 80, 084043 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.80.084043
L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Relativity 17, 2 (2014). 1433-8351 10.12942/lrr-2014-2
A. Buonanno and T. Damour, Effective One-Body Approach to General Relativistic Two-Body Dynamics, Phys. Rev. D 59, 084006 (1999). PRVDAQ 0556-2821 10.1103/PhysRevD.59.084006
A. Buonanno and T. Damour, Transition from Inspiral to Plunge in Binary Black Hole Coalescences, Phys. Rev. D 62, 064015 (2000). PRVDAQ 0556-2821 10.1103/PhysRevD.62.064015
T. Damour, P. Jaranowski, and G. Schaefer, Effective One Body Approach to the Dynamics of Two Spinning Black Holes with Next-to-Leading Order Spin-Orbit Coupling, Phys. Rev. D 78, 024009 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.78.024009
T. Damour and A. Nagar, An Improved Analytical Description of Inspiralling and Coalescing Black-Hole Binaries, Phys. Rev. D 79, 081503 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.081503
E. Barausse and A. Buonanno, An Improved Effective-One-Body Hamiltonian for Spinning Black-Hole Binaries, Phys. Rev. D 81, 084024 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.084024
T. Damour and A. Nagar, The Effective-One-Body Approach to the General Relativistic Two Body Problem, Lect. Notes Phys. 905, 273 (2016). LNPHA4 0075-8450 10.1007/978-3-319-19416-5
F. Pretorius, Evolution of Binary Black Hole Spacetimes, Phys. Rev. Lett. 95, 121101 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.121101
M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Accurate Evolutions of Orbiting Black-Hole Binaries without Excision, Phys. Rev. Lett. 96, 111101 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.111101
J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, Gravitational Wave Extraction from an Inspiraling Configuration of Merging Black Holes, Phys. Rev. Lett. 96, 111102 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.111102
A. H. Mroue, Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy, Phys. Rev. Lett. 111, 241104 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.241104
S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J. Forteza, and A. Bohé, Frequency-Domain Gravitational Waves from Nonprecessing Black-Hole Binaries. I. New Numerical Waveforms and Anatomy of the Signal, Phys. Rev. D 93, 044006 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044006
T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilagyi, On the Accuracy and Precision of Numerical Waveforms: Effect of Waveform Extraction Methodology, Classical Quantum Gravity 33, 165001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/16/165001
D. Davis, T. J. Massinger, A. P. Lundgren, J. C. Driggers, A. L. Urban, and L. K. Nuttall, Improving the Sensitivity of Advanced LIGO Using Noise Subtraction, Classical Quantum Gravity 36, 055011 (2019). CQGRDG 0264-9381 10.1088/1361-6382/ab01c5
J. C. Driggers (LIGO Scientific Collaboration), Improving Astrophysical Parameter Estimation via Offline Noise Subtraction for Advanced LIGO, Phys. Rev. D 99, 042001 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.042001
N. J. Cornish and T. B. Littenberg, BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches, Classical Quantum Gravity 32, 135012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/13/135012
T. B. Littenberg and N. J. Cornish, Bayesian Inference for Spectral Estimation of Gravitational Wave Detector Noise, Phys. Rev. D 91, 084034 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.084034
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, arXiv:1811.12940.
LIGO Scientific Collaboration, Virgo Collaboration, Gravitational Wave Open Science Center, https://www.gw-openscience.org.
B. P. Abbott (Virgo, LIGO Scientific Collaboration), GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett. 116, 131103 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.131103
B. P. Abbott, Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy, Phys. Rev. D 93, 112004 (2016); PRVDAQ 2470-0010 10.1103/PhysRevD.93.112004
B. P. Abbott Phys. Rev. D 97, 059901(A) (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.059901
M. Walker, A. F. Agnew, J. Bidler, A. Lundgren, A. Macedo, D. Macleod, T. J. Massinger, O. Patane, and J. R. Smith, Identifying Correlations between LIGO's Astronomical Range and Auxiliary Sensors Using Lasso Regression, Classical Quantum Gravity 35, 225002 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aae593
Interferometer performance is commonly reduced to a single scalar number that quantifies the distance to which a single instrument could detect a (Equation presented) BNS merger, averaged over the sky location and orientation, with an average SNR of 8 [62,63].
H.-Y. Chen, D. E. Holz, J. Miller, M. Evans, S. Vitale, and J. Creighton, Distance Measures in Gravitational-Wave Astrophysics and Cosmology, arXiv:1709.08079.
L. S. Finn and D. F. Chernoff, Observing Binary Inspiral in Gravitational Radiation: One Interferometer, Phys. Rev. D 47, 2198 (1993). PRVDAQ 0556-2821 10.1103/PhysRevD.47.2198
C. Cahillane (LIGO Scientific Collaboration), Calibration Uncertainty for Advanced LIGO's First and Second Observing Runs, Phys. Rev. D 96, 102001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.102001
A. Viets, Reconstructing the Calibrated Strain Signal in the Advanced LIGO Detectors, Classical Quantum Gravity 35, 095015 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aab658
I. Bartos, R. Bork, M. Factourovich, J. Heefner, S. Marka, Z. Marka, Z. Raics, P. Schwinberg, and D. Sigg, The Advanced LIGO Timing System, Classical Quantum Gravity 27, 084025 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084025
F. Acernese (Virgo Collaboration), Calibration of Advanced Virgo and Reconstruction of the Gravitational Wave Signal (Equation presented) during the Observing Run O2, Classical Quantum Gravity 35, 205004 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aadf1a
B. P. Abbott (Virgo, LIGO Scientific Collaboration), Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO's First Observing Run, Classical Quantum Gravity 35, 065010 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aaaafa
T. Dal Canton, A. P. Lundgren, and A. B. Nielsen, Impact of Precession on Aligned-Spin Searches for Neutron-Star-Black-Hole Binaries, Phys. Rev. D 91, 062010 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.062010
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An Algorithm for Detection of Gravitational Waves from Inspiraling Compact Binaries, Phys. Rev. D 85, 122006 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.122006
B. Allen, (Equation presented) Time-Frequency Discriminator for Gravitational Wave Detection, Phys. Rev. D 71, 062001 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.062001
A. H. Nitz, Distinguishing Short Duration Noise Transients in LIGO Data to Improve the PyCBC Search for Gravitational Waves from High Mass Binary Black Hole Mergers, Classical Quantum Gravity 35, 035016 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aaa13d
A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst, and D. A. Brown, Detecting Binary Compact-Object Mergers with Gravitational Waves: Understanding and Improving the Sensitivity of the PyCBC Search, Astrophys. J. 849, 118 (2017). 10.3847/1538-4357/aa8f50
This statement is true of almost all analysis periods, but the last analysis period in (Equation presented) has a slightly shorter length of approximately 3.6 days.
T. Dal Canton and I. Harry, Designing a Template Bank to Observe Compact Binary Coalescences in Advanced LIGO's Second Observing Run, arXiv:1705.01845.
M. Pürrer, Frequency Domain Reduced Order Model of Aligned-Spin Effective-One-Body Waveforms with Generic Mass-Ratios and Spins, Phys. Rev. D 93, 064041 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.064041
M. Pürrer, Frequency Domain Reduced Order Models for Gravitational Waves from Aligned-Spin Compact Binaries, Classical Quantum Gravity 31, 195010 (2014). CQGRDG 0264-9381 10.1088/0264-9381/31/19/195010
G. Faye, S. Marsat, L. Blanchet, and B. R. Iyer, The Third and a Half Post-Newtonian Gravitational Wave Quadrupole Mode for Quasi-Circular Inspiralling Compact Binaries, Classical Quantum Gravity 29, 175004 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/17/175004
As a reminder, GstLAL analyzes data from three interferometers, so the light travel time depends on the specific interferometers involved in any particular candidate.
K. Cannon, C. Hanna, and J. Peoples, Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation, arXiv:1504.04632.
C. Hanna, Fast Evaluation of Multi-Detector Consistency for Real-Time Gravitational Wave Searches, arXiv:1901.02227.
D. Mukherjee, The GstLAL Template Bank for Spinning Compact Binary Mergers in the Second Observation Run of Advanced LIGO and Virgo, arXiv:1812.05121.
S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, Coherent Method for Detection of Gravitational Wave Bursts, Classical Quantum Gravity 25, 114029 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/11/114029
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914, Astrophys. J. Lett. 833, L1 (2016). AJLEEY 2041-8213 10.3847/2041-8205/833/1/L1
W. M. Farr and J. R. Gair, The Sirens of August: Detection of Five Gravitational Wave Events in August 2017 Is Consistent with a Constant Rate, LIGO Scientific Collaboration and Virgo Collaboration Technical Report No. LIGO-T1800529, https://dcc.ligo.org/LIGO-T1800529/public.
A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White, D. A. Brown, and B. Krishnan, 1-OGC: The First Open Gravitational-Wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data, arXiv:1811.01921.
S. J. Kapadia, A Self-Consistent Method to Estimate the Rate of Compact Binary Coalescences with a Poisson Mixture Model, arXiv:1903.06881.
W. M. Farr, J. R. Gair, I. Mandel, and C. Cutler, Counting and Confusion: Bayesian Rate Estimation with Multiple Populations, Phys. Rev. D 91, 023005 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.023005
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914, Classical Quantum Gravity 33, 134001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/13/134001
L. K. Nuttall, Characterizing Transient Noise in the LIGO Detectors, Phil. Trans. R. Soc. A 376, 20170286 (2018). PTRMAD 1364-503X 10.1098/rsta.2017.0286
J. McIver, Data Quality Studies of Enhanced Interferometric Gravitational Wave Detectors, Classical Quantum Gravity 29, 124010 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/12/124010
A. J. Levan, The Environment of the Binary Neutron Star Merger GW170817, Astrophys. J. 848, L28 (2017). 10.3847/2041-8213/aa905f
E. Oelker, T. Isogai, J. Miller, M. Tse, L. Barsotti, N. Mavalvala, and M. Evans, Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 041102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.041102
B. P. Abbott (Virgo, LIGO Scientific Collaboration), Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model, Phys. Rev. X 6, 041014 (2016). PRXHAE 2160-3308 10.1103/PhysRevX.6.041014
B. P. Abbott (LIGO Scientific, Virgo Collaboration), Properties of the Binary Neutron Star Merger GW170817, Phys. Rev. X 9, 011001 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.011001
W. M. Farr, B. Farr, and T. Littenberg, Modelling Calibration Errors in CBC Waveforms, Collaboration Technical Report No. LIGO-T1400682, https://dcc.ligo.org/LIGO-T1400682/public.
T. Dietrich, S. Bernuzzi, and W. Tichy, Closed-Form Tidal Approximants for Binary Neutron Star Gravitational Waveforms Constructed from High-Resolution Numerical Relativity Simulations, Phys. Rev. D 96, 121501 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.121501
B. S. Sathyaprakash and S. V. Dhurandhar, Choice of Filters for the Detection of Gravitational Waves from Coalescing Binaries, Phys. Rev. D 44, 3819 (1991). PRVDAQ 0556-2821 10.1103/PhysRevD.44.3819
L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order, Phys. Rev. Lett. 74, 3515 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.74.3515
L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer, Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order, Phys. Rev. Lett. 93, 091101 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.091101
W. D. Goldberger and I. Z. Rothstein, An Effective Field Theory of Gravity for Extended Objects, Phys. Rev. D 73, 104029 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.73.104029
T. Damour and A. Nagar, Effective One Body Description of Tidal Effects in Inspiralling Compact Binaries, Phys. Rev. D 81, 084016 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.084016
J. Vines, É. É. Flanagan, and T. Hinderer, Post-1-Newtonian Tidal Effects in the Gravitational Waveform from Binary Inspirals, Phys. Rev. D 83, 084051 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.83.084051
D. Bini, T. Damour, and G. Faye, Effective Action Approach to Higher-Order Relativistic Tidal Interactions in Binary Systems and Their Effective One Body Description, Phys. Rev. D 85, 124034 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.124034
T. Damour, A. Nagar, and L. Villain, Measurability of the Tidal Polarizability of Neutron Stars in Late-Inspiral Gravitational-Wave Signals, Phys. Rev. D 85, 123007 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.123007
A. Bohé, S. Marsat, and L. Blanchet, Next-to-Next-to-Leading Order Spin-Orbit Effects in the Gravitational Wave Flux and Orbital Phasing of Compact Binaries, Classical Quantum Gravity 30, 135009 (2013). CQGRDG 0264-9381 10.1088/0264-9381/30/13/135009
K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Higher-Order Spin Effects in the Amplitude and Phase of Gravitational Waveforms Emitted by Inspiraling Compact Binaries: Ready-to-Use Gravitational Waveforms, Phys. Rev. D 79, 104023 (2009); PRVDAQ 1550-7998 10.1103/PhysRevD.79.104023
K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner Erratum, Phys. Rev. D 84, 049901(E) (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.84.049901
B. Mikoczi, M. Vasuth, and L. A. Gergely, Self-Interaction Spin Effects in Inspiralling Compact Binaries, Phys. Rev. D 71, 124043 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.124043
A. Bohé, G. Faye, S. Marsat, and E. K. Porter, Quadratic-in-Spin Effects in the Orbital Dynamics and Gravitational-Wave Energy Flux of Compact Binaries at the 3PN Order, Classical Quantum Gravity 32, 195010 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/19/195010
C. K. Mishra, A. Kela, K. G. Arun, and G. Faye, Ready-to-Use Post-Newtonian Gravitational Waveforms for Binary Black Holes with Nonprecessing Spins: An Update, Phys. Rev. D 93, 084054 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.084054
S. Bernuzzi, A. Nagar, T. Dietrich, and T. Damour, Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger, Phys. Rev. Lett. 114, 161103 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.161103
W. Israel, Event Horizons in Static Vacuum Space-Times, Phys. Rev. 164, 1776 (1967). PHRVAO 0031-899X 10.1103/PhysRev.164.1776
B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett. 26, 331 (1971). PRLTAO 0031-9007 10.1103/PhysRevLett.26.331
D. C. Robinson, Uniqueness of the Kerr Black Hole, Phys. Rev. Lett. 34, 905 (1975). PRLTAO 0031-9007 10.1103/PhysRevLett.34.905
R. M. Wald, General Relativity (Chicago University, Chicago, 1984).
S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford Classic Texts in the Physical Sciences (Oxford University Press, New York, 1992).
T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne, Spin Induced Orbital Precession and Its Modulation of the Gravitational Wave Forms from Merging Binaries, Phys. Rev. D 49, 6274 (1994). PRVDAQ 0556-2821 10.1103/PhysRevD.49.6274
L. E. Kidder, Coalescing Binary Systems of Compact Objects to Post-Newtonian (Equation presented) Order. 5. Spin Effects, Phys. Rev. D 52, 821 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.821
É. Racine, Analysis of Spin Precession in Binary Black Hole Systems Including Quadrupole-Monopole Interaction, Phys. Rev. D 78, 044021 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.78.044021
E. Poisson and C. M. Will, Gravitational Waves from Inspiraling Compact Binaries: Parameter Estimation Using Second Post-Newtonian Waveforms, Phys. Rev. D 52, 848 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.848
T. Damour, Coalescence of Two Spinning Black Holes: An Effective One-Body Approach, Phys. Rev. D 64, 124013 (2001). PRVDAQ 0556-2821 10.1103/PhysRevD.64.124013
P. Ajith, Addressing the Spin Question in Gravitational-Wave Searches: Waveform Templates for Inspiralling Compact Binaries with Nonprecessing Spins, Phys. Rev. D 84, 084037 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.84.084037
P. Schmidt, F. Ohme, and M. Hannam, Towards Models of Gravitational Waveforms from Generic Binaries II: Modelling Precession Effects with a Single Effective Precession Parameter, Phys. Rev. D 91, 024043 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.024043
P. C. Peters and J. Mathews, Gravitational Radiation from Point Masses in a Keplerian Orbit, Phys. Rev. 131, 435 (1963). PHRVAO 0031-899X 10.1103/PhysRev.131.435
P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136, B1224 (1964). PHRVAO 0031-899X 10.1103/PhysRev.136.B1224
C. Cutler and É. E. Flanagan, Gravitational Waves from Merging Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Wave Form?, Phys. Rev. D 49, 2658 (1994). PRVDAQ 0556-2821 10.1103/PhysRevD.49.2658
B. Farr, E. Ochsner, W. M. Farr, and R. O'Shaughnessy, A More Effective Coordinate System for Parameter Estimation of Precessing Compact Binaries from Gravitational Waves, Phys. Rev. D 90, 024018 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.024018
M. Favata, Systematic Parameter Errors in Inspiraling Neutron Star Binaries, Phys. Rev. Lett. 112, 101101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.101101
L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey, B. F. Farr, T. B. Littenberg, and V. Raymond, Systematic and Statistical Errors in a Bayesian Approach to the Estimation of the Neutron-Star Equation of State Using Advanced Gravitational Wave Detectors, Phys. Rev. D 89, 103012 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.103012
K. Belczynski, T. Bulik, C. L. Fryer, A. Ruiter, F. Valsecchi, J. S. Vink, and J. R. Hurley, On the Maximum Mass of Stellar Black Holes, Astrophys. J. 714, 1217 (2010). 10.1088/0004-637X/714/2/1217
M. Mapelli, L. Zampieri, E. Ripamonti, and A. Bressan, Dynamics of Stellar Black Holes in Young Star Clusters with Different Metallicities-I. Implications for X-Ray Binaries, Mon. Not. R. Astron. Soc. 429, 2298 (2013). MNRAA4 0035-8711 10.1093/mnras/sts500
M. Spera, M. Mapelli, and A. Bressan, The Mass Spectrum of Compact Remnants from the PARSEC Stellar Evolution Tracks, Mon. Not. R. Astron. Soc. 451, 4086 (2015). MNRAA4 0035-8711 10.1093/mnras/stv1161
M. Spera and M. Mapelli, Very Massive Stars, Pair-Instability Supernovae and Intermediate-Mass Black Holes with the Sevn Code, Mon. Not. R. Astron. Soc. 470, 4739 (2017). MNRAA4 0035-8711 10.1093/mnras/stx1576
S. E. Woosley, Pulsational Pair-Instability Supernovae, Astrophys. J. 836, 244 (2017). 10.3847/1538-4357/836/2/244
N. Giacobbo, M. Mapelli, and M. Spera, Merging Black Hole Binaries: The Effects of Progenitor's Metallicity, Mass-Loss Rate and Eddington Factor, Mon. Not. R. Astron. Soc. 474, 2959 (2018). MNRAA4 0035-8711 10.1093/mnras/stx2933
P. Marchant, N. Langer, P. Podsiadlowski, T. M. Tauris, and T. J. Moriya, A New Route towards Merging Massive Black Holes, Astron. Astrophys. 588, A50 (2016). AAEJAF 0004-6361 10.1051/0004-6361/201628133
F. Özel, D. Psaltis, R. Narayan, and J. E. McClintock, The Black Hole Mass Distribution in the Galaxy, Astrophys. J. 725, 1918 (2010). 10.1088/0004-637X/725/2/1918
W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel, and V. Kalogera, The Mass Distribution of Stellar-Mass Black Holes, Astrophys. J. 741, 103 (2011). 10.1088/0004-637X/741/2/103
L. Kreidberg, C D. Bailyn, W. M. Farr, and V. Kalogera, Mass Measurements of Black Holes in X-Ray Transients: Is There a Mass Gap?, Astrophys. J. 757, 36 (2012). 10.1088/0004-637X/757/1/36
J. Antoniadis, A Massive Pulsar in a Compact Relativistic Binary, Science 340, 1233232 (2013). SCIEAS 0036-8075 10.1126/science.1233232
J. Veitch, M. Pürrer, and I. Mandel, Measuring Intermediate Mass Black Hole Binaries with Advanced Gravitational Wave Detectors, Phys. Rev. Lett. 115, 141101 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.115.141101
P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries, Phys. Rev. D 92, 022002 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.022002
C.-J. Haster, Z. Wang, C. P. L. Berry, S. Stevenson, J. Veitch, and I. Mandel, Inference on Gravitational Waves from Coalescences of Stellar-Mass Compact Objects and Intermediate-Mass Black Holes, Mon. Not. R. Astron. Soc. 457, 4499 (2016). MNRAA4 0035-8711 10.1093/mnras/stw233
A. Ghosh, W. Del Pozzo, and P. Ajith, Estimating Parameters of Binary Black Holes from Gravitational-Wave Observations of Their Inspiral, Merger and Ringdown, Phys. Rev. D 94, 104070 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.104070
M. Pürrer, M. Hannam, and F. Ohme, Can We Measure Individual Black-Hole Spins from Gravitational-Wave Observations?, Phys. Rev. D 93, 084042 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.084042
The fits for the final mass and spin can be different from the fits used internally in the waveform models used in the analyses.
F. Hofmann, E. Barausse, and L. Rezzolla, The Final Spin from Binary Black Holes in Quasi-Circular Orbits, Astrophys. J. Lett. 825, L19 (2016). AJLEEY 2041-8213 10.3847/2041-8205/825/2/L19
X. Jiménez-Forteza, D. Keitel, S. Husa, M. Hannam, S. Khan, and M. Pürrer, Hierarchical Data-Driven Approach to Fitting Numerical Relativity Data for Nonprecessing Binary Black Holes with an Application to Final Spin and Radiated Energy, Phys. Rev. D 95, 064024 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.064024
J. Healy and C. O. Lousto, Remnant of Binary Black-Hole Mergers: New Simulations and Peak Luminosity Studies, Phys. Rev. D 95, 024037 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.024037
N. K. Johnson-McDaniel, Determining the Final Spin of a Binary Black Hole System Including In-Plane Spins: Method and Checks of Accuracy, LIGO Scientific Collaboration and Virgo Collaboration Technical Report No. LIGO-T1600168, https://dcc.ligo.org/LIGO-T1600168/public.
D. Keitel, The Most Powerful Astrophysical Events: Gravitational-Wave Peak Luminosity of Binary Black Holes as Predicted by Numerical Relativity, Phys. Rev. D 96, 024006 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.024006
M. Campanelli, C. O. Lousto, and Y. Zlochower, Spinning-Black-Hole Binaries: The Orbital Hang Up, Phys. Rev. D 74, 041501 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.74.041501
E. Baird, S. Fairhurst, M. Hannam, and P. Murphy, Degeneracy between Mass and Spin in Black-Hole-Binary Waveforms, Phys. Rev. D 87, 024035 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.024035
M. Pürrer, M. Hannam, P. Ajith, and S. Husa, Testing the Validity of the Single-Spin Approximation in Inspiral-Merger-Ringdown Waveforms, Phys. Rev. D 88, 064007 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.064007
S. Vitale, R. Lynch, V. Raymond, R. Sturani, J. Veitch, and P. Graff, Parameter Estimation for Heavy Binary-Black Holes with Networks of Second-Generation Gravitational-Wave Detectors, Phys. Rev. D 95, 064053 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.064053
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), Effects of Waveform Model Systematics on the Interpretation of GW150914, Classical Quantum Gravity 34, 104002 (2017). CQGRDG 0264-9381 10.1088/1361-6382/aa6854
S. Kullback and R. A. Leibler, On Information and Sufficiency, Ann. Math. Stat. 22, 79 (1951). AASTAD 0003-4851 10.1214/aoms/1177729694
C. E. Shannon, A Mathematical Theory of Communication, Bell Syst. Tech. J. 27 (1948). BSTJAN 0005-8580 10.1002/j.1538-7305.1948.tb01338.x
A. Vecchio, LISA Observations of Rapidly Spinning Massive Black Hole Binary Systems, Phys. Rev. D 70, 042001 (2004). PRVDAQ 1550-7998 10.1103/PhysRevD.70.042001
S. Vitale, R. Lynch, J. Veitch, V. Raymond, and R. Sturani, Measuring the Spin of Black Holes in Binary Systems Using Gravitational Waves, Phys. Rev. Lett. 112, 251101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.251101
K. Chatziioannou, N. Cornish, A. Klein, and N. Yunes, Spin-Precession: Breaking the Black Hole-Neutron Star Degeneracy, Astrophys. J. 798, L17 (2015). 10.1088/2041-8205/798/1/L17
D. Gerosa, M. Kesden, U. Sperhake, E. Berti, and R. O'Shaughnessy, Multi-Timescale Analysis of Phase Transitions in Precessing Black-Hole Binaries, Phys. Rev. D 92, 064016 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.064016
S. Vitale, R. Lynch, R. Sturani, and P. Graff, Use of Gravitational Waves to Probe the Formation Channels of Compact Binaries, Classical Quantum Gravity 34, 03LT01 (2017). CQGRDG 0264-9381 10.1088/1361-6382/aa552e
S. Stevenson, C. P. L. Berry, and I. Mandel, Hierarchical Analysis of Gravitational-Wave Measurements of Binary Black Hole Spin-Orbit Misalignments, Mon. Not. R. Astron. Soc. 471, 2801 (2017). MNRAA4 0035-8711 10.1093/mnras/stx1764
W. M. Farr, S. Stevenson, M. C. Miller, I. Mandel, B. Farr, and A. Vecchio, Distinguishing Spin-Aligned and Isotropic Black Hole Populations with Gravitational Waves, Nature (London) 548, 426 (2017). NATUAS 0028-0836 10.1038/nature23453
C. Talbot and E. Thrane, Determining the Population Properties of Spinning Black Holes, Phys. Rev. D 96, 023012 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.023012
B. Farr, D. E. Holz, and W. M. Farr, Using Spin to Understand the Formation of LIGO and Virgo's Black Holes, Astrophys. J. 854, L9 (2018). 10.3847/2041-8213/aaaa64
D. Wysocki, J. Lange, and R. O'Shaughnessy, Reconstructing Phenomenological Distributions of Compact Binaries via Gravitational Wave Observations, arXiv:1805.06442.
V. Kalogera, Spin-Orbit Misalignment in Close Binaries with Two Compact Objects, Astrophys. J. 541, 319 (2000). 10.1086/309400
I. Mandel and R. O'Shaughnessy, Compact Binary Coalescences in the Band of Ground-Based Gravitational-Wave Detectors, Classical Quantum Gravity 27, 114007 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/11/114007
K. Belczynski, V. Kalogera, F. A. Rasio, R. E. Taam, A. Zezas, T. Bulik, T. J. Maccarone, and N. Ivanova, Compact Object Modeling with the StarTrack Population Synthesis Code, Astrophys. J. Suppl. Ser. 174, 223 (2008). 10.1086/521026
C. L. Rodriguez, M. Zevin, C. Pankow, V. Kalogera, and F. A. Rasio, Illuminating Black Hole Binary Formation Channels with Spins in Advanced LIGO, Astrophys. J. 832, L2 (2016). 10.3847/2041-8205/832/1/L2
B. Liu and D. Lai, Spin-Orbit Misalignment of Merging Black Hole Binaries with Tertiary Companions, Astrophys. J. 846, L11 (2017). 10.3847/2041-8213/aa8727
B. Liu and D. Lai, Black Hole and Neutron Star Binary Mergers in Triple Systems: Merger Fraction and Spin-Orbit Misalignment, Astrophys. J. 863, 68 (2018). 10.3847/1538-4357/aad09f
F. Antonini, C. L. Rodriguez, C. Petrovich, and C. L. Fischer, Precessional Dynamics of Black Hole Triples: Binary Mergers with Near-Zero Effective Spin, Mon. Not. R. Astron. Soc. 480, L58 (2018). MNRAA4 0035-8711 10.1093/mnrasl/sly126
M. U. Kruckow, T. M. Tauris, N. Langer, M. Kramer, and R. G. Izzard, Progenitors of Gravitational Wave Mergers: Binary Evolution with the Stellar Grid-Based Code COMBINE, Mon. Not. R. Astron. Soc. 481, 1908 (2018). MNRAA4 0035-8711 10.1093/mnras/sty2190
N. Giacobbo and M. Mapelli, The Progenitors of Compact-Object Binaries: Impact of Metallicity, Common Envelope and Natal Kicks, Mon. Not. R. Astron. Soc. 480, 2011 (2018). MNRAA4 0035-8711 10.1093/mnras/sty1999
J. A. Gonzalez, U. Sperhake, B. Bruegmann, M. Hannam, and S. Husa, Total Recoil: The Maximum Kick from Nonspinning Black-Hole Binary Inspiral, Phys. Rev. Lett. 98, 091101 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.98.091101
E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, and B. Bruegmann, Inspiral, Merger and Ringdown of Unequal Mass Black Hole Binaries: A Multipolar Analysis, Phys. Rev. D 76, 064034 (2007). PRVDAQ 1550-7998 10.1103/PhysRevD.76.064034
A. Buonanno, L. E. Kidder, and L. Lehner, Estimating the Final Spin of a Binary Black Hole Coalescence, Phys. Rev. D 77, 026004 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.77.026004
M. Campanelli, C. O. Lousto, and Y. Zlochower, The Last Orbit of Binary Black Holes, Phys. Rev. D 73, 061501 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.73.061501
J. G. Baker, M. Campanelli, C. O. Lousto, and R. Takahashi, Coalescence Remnant of Spinning Binary Black Holes, Phys. Rev. D 69, 027505 (2004). PRVDAQ 0556-2821 10.1103/PhysRevD.69.027505
LIGO Scientific Collaboration, Virgo Collaboration, Low-Latency Skymaps for Transient GW Events in LIGO-Virgo O1 and O2, https://dcc.ligo.org/LIGO-P1900170/public.
S. Nissanke, D. E. Holz, S. A. Hughes, N. Dalal, and J. L. Sievers, Exploring Short Gamma-Ray Bursts as Gravitational-Wave Standard Sirens, Astrophys. J. 725, 496 (2010). 10.1088/0004-637X/725/1/496
B. Farr, Parameter Estimation on Gravitational Waves from Neutron-Star Binaries with Spinning Components, Astrophys. J. 825, 116 (2016). 10.3847/0004-637X/825/2/116
M. V. van der Sluys, C. Roever, A. Stroeer, N. Christensen, V. Kalogera, R. Meyer, and A. Vecchio, Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries, Astrophys. J. 688, L61 (2008). 10.1086/595279
T. Broadhurst, J. M. Diego, and G. Smoot, Reinterpreting Low Frequency LIGO/Virgo Events as Magnified Stellar-Mass Black Holes at Cosmological Distances, arXiv:1802.05273.
G. P. Smith, M. Jauzac, J. Veitch, W. M. Farr, R. Massey, and J. Richard, What If LIGO's Gravitational Wave Detections Are Strongly Lensed by Massive Galaxy Clusters?, Mon. Not. R. Astron. Soc. 475, 3823 (2018). MNRAA4 0035-8711 10.1093/mnras/sty031
S. Fairhurst, Triangulation of Gravitational Wave Sources with a Network of Detectors, New J. Phys. 11, 123006 (2009); NJOPFM 1367-2630 10.1088/1367-2630/11/12/123006
S. Fairhurst Erratum, New J. Phys. 13, 069602(E) (2011). NJOPFM 1367-2630 10.1088/1367-2630/13/6/069602
K. Grover, S. Fairhurst, B. F. Farr, I. Mandel, C. Rodriguez, T. Sidery, and A. Vecchio, Comparison of Gravitational Wave Detector Network Sky Localization Approximations, Phys. Rev. D 89, 042004 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.042004
L. P. Singer and L. R. Price, Rapid Bayesian Position Reconstruction for Gravitational-Wave Transients, Phys. Rev. D 93, 024013 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.024013
M. M. Kasliwal and S. Nissanke, On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors, Astrophys. J. 789, L5 (2014). 10.1088/2041-8205/789/1/L5
L. P. Singer, The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo, Astrophys. J. 795, 105 (2014). 10.1088/0004-637X/795/2/105
R. Essick, S. Vitale, E. Katsavounidis, G. Vedovato, and S. Klimenko, Localization of Short Duration Gravitational-Wave Transients with the Early Advanced LIGO and Virgo Detectors, Astrophys. J. 800, 81 (2015). 10.1088/0004-637X/800/2/81
C. P. L. Berry, Parameter Estimation for Binary Neutron-Star Coalescences with Realistic Noise during the Advanced LIGO Era, Astrophys. J. 804, 114 (2015). 10.1088/0004-637X/804/2/114
J. Veitch, I. Mandel, B. Aylott, B. Farr, V. Raymond, C. Rodriguez, M. van der Sluys, V. Kalogera, and A. Vecchio, Estimating Parameters of Coalescing Compact Binaries with Proposed Advanced Detector Networks, Phys. Rev. D 85, 104045 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.104045
C. L. Rodriguez, B. Farr, V. Raymond, W. M. Farr, T. B. Littenberg, D. Fazi, and V. Kalogera, Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network, Astrophys. J. 784, 119 (2014). 10.1088/0004-637X/784/2/119
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA), Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo, Living Rev. Relativity 21, 3 (2018). 1433-8351 10.1007/s41114-018-0012-9
Optimal SNRs for Virgo from PE are shown in Table V. For GW170729 and GW170809, these values are below the GstLAL single-detector SNR threshold for Virgo of 3.5.
B. P. Abbott (LIGO Scientific, Virgo Collaboration), GW170817: Measurements of Neutron Star Radii and Equation of State, Phys. Rev. Lett. 121, 161101 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.161101
J. S. Read, C. Markakis, M. Shibata, K. Uryu, J. D. E. Creighton, and J. L. Friedman, Measuring the Neutron Star Equation of State with Gravitational Wave Observations, Phys. Rev. D 79, 124033 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.124033
F. Zappa, S. Bernuzzi, D. Radice, A. Perego, and T. Dietrich, Gravitational-Wave Luminosity of Binary Neutron Stars Mergers, Phys. Rev. Lett. 120, 111101 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.111101
S. Bernuzzi, A. Nagar, S. Balmelli, T. Dietrich, and M. Ujevic, Quasiuniversal Properties of Neutron Star Mergers, Phys. Rev. Lett. 112, 201101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.201101
F. Zappa, S. Bernuzzi, and A. Perego, Gravitational-Wave Energy, Luminosity and Angular Momentum from Numerical Relativity Simulations of Binary Neutron Stars Mergers, LIGO Scientific Collaboration and Virgo Collaboration, Technical Report No. LIGO-T1800417, https://dcc.ligo.org/T1800417/public https://tds.virgo-gw.eu/?content=3&r=15019.
LHO for the events GW150914, GW151012, GW151226, GW170608, and GW170729 and LLO for GW170104, GW170809, GW170814, GW170818, and GW170823.
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced Ligo's First Observing Run, Astrophys. J. Lett. 832, L21 (2016). AJLEEY 2041-8213 10.3847/2041-8205/832/2/L21
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), Supplement: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914, Astrophys. J. Suppl. 227, 14 (2016). 10.3847/0067-0049/227/2/14
V. Tiwari, Estimation of the Sensitive Volume for Gravitational-Wave Source Populations Using Weighted Monte Carlo Integration, Classical Quantum Gravity 35, 145009 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aac89d
M. Burgay, An Increased Estimate of the Merger Rate of Double Neutron Stars from Observations of a Highly Relativistic System, Nature (London) 426, 531 (2003). NATUAS 0028-0836 10.1038/nature02124
V. Kalogera, C. Kim, D. R. Lorimer, M. Burgay, N. D'Amico, A. Possenti, R. N. Manchester, A. G. Lyne, B. C. Joshi, M. A. McLaughlin, M. Kramer, J. M. Sarkissian, and F. Camilo, The Cosmic Coalescence Rates for Double Neutron Star Binaries, Astrophys. J. Lett. 601, L179 (2004). AJLEEY 2041-8213 10.1086/382155
C. Kim, B. B. P. Perera, and M. A. McLaughlin, Implications of PSR J0737-3039B for the Galactic NS-NS Binary Merger Rate, Mon. Not. R. Astron. Soc. 448, 928 (2015). MNRAA4 0035-8711 10.1093/mnras/stu2729
F. Özel, D. Psaltis, R. Narayan, and A. S. Villarreal, On the Mass Distribution and Birth Masses of Neutron Stars, Astrophys. J. 757, 55 (2012). 10.1088/0004-637X/757/1/55
N. Pol, M. McLaughlin, and D. R. Lorimer, Future Prospects for Ground-Based Gravitational Wave Detectors-The Galactic Double Neutron Star Merger Rate Revisited, Astrophys. J. 870, 71 (2019); 10.3847/1538-4357/aaf006
N. Pol, M. McLaughlin, and D. R. Lorimer Erratum, Astrophys. J. 874, 186(E) (2019). 10.3847/1538-4357/ab0c22
J. Abadie (VIRGO, LIGO Scientific Collaboration), Predictions for the Rates of Compact Binary Coalescences Observable by Ground-Based Gravitational-Wave Detectors, Classical Quantum Gravity 27, 173001 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/17/173001
B. P. Abbott (LIGO Scientific, Virgo Collaboration), Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1, arXiv:1903.04467.
B. P. Abbott (Virgo, LIGO Scientific Collaboration), Tests of General Relativity with GW170817, arXiv:1811.00364.
P. Marchant, M. Renzo, R. Farmer, K. M. W. Pappas, R. E. Taam, S. de Mink, and V. Kalogera, Pulsational Pair-Instability Supernovae in Very Close Binaries, arXiv:1810.13412.
S. Stevenson, F. Ohme, and S. Fairhurst, Distinguishing Compact Binary Population Synthesis Models Using Gravitational Wave Observations of Coalescing Binary Black Holes, Astrophys. J. 810, 58 (2015). 10.1088/0004-637X/810/1/58
C. Talbot and E. Thrane, Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization, Astrophys. J. 856, 173 (2018). 10.3847/1538-4357/aab34c
M. Fishbach and D. E. Holz, Where Are LIGO's Big Black Holes?, Astrophys. J. 851, L25 (2017). 10.3847/2041-8213/aa9bf6
M. Zevin, C. Pankow, C. L. Rodriguez, L. Sampson, E. Chase, V. Kalogera, and F. A. Rasio, Constraining Formation Models of Binary Black Holes with Gravitational-Wave Observations, Astrophys. J. Lett. 846, 82 (2017). AJLEEY 2041-8213 10.3847/1538-4357/aa8408
M. Fishbach, D. E. Holz, and B. Farr, Are LIGO's Black Holes Made from Smaller Black Holes?, Astrophys. J. Lett. 840, L24 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa7045
J. W. Barrett, S. M. Gaebel, C. J. Neijssel, A. Vigna-Gómez, S. Stevenson, C. P. L. Berry, W. M. Farr, and I. Mandel, Accuracy of Inference on the Physics of Binary Evolution from Gravitational-Wave Observations, Mon. Not. R. Astron. Soc. 477, 4685 (2018). MNRAA4 0035-8711 10.1093/mnras/sty908
K. Somiya (KAGRA Collaboration), Detector Configuration of KAGRA: The Japanese Cryogenic Gravitational-Wave Detector, Classical Quantum Gravity 29, 124007 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/12/124007
Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto (KAGRA Collaboration), Interferometer Design of the KAGRA Gravitational Wave Detector, Phys. Rev. D 88, 043007 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.043007
T. Akutsu (KAGRA Collaboration), Construction of KAGRA: An Underground Gravitational Wave Observatory, Prog. Theor. Exp. Phys. 2018, 013F01 (2018). PTEPCR 2050-3911 10.1093/ptep/ptx180
T. Accadia, Noise from Scattered Light in Virgo's Second Science Run Data, Classical Quantum Gravity 27, 194011 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/19/194011
D. J. Ottaway, P. Fritschel, and S. J. Waldman, Impact of Upconverted Scattered Light on Advanced Interferometric Gravitational Wave Detectors, Opt. Express 20, 8329 (2012). OPEXFF 1094-4087 10.1364/OE.20.008329
G. Valdes, B. O'Reilly, and M. Diaz, A Hilbert-Huang Transform Method for Scattering Identification in LIGO, Classical Quantum Gravity 34, 235009 (2017). CQGRDG 0264-9381 10.1088/1361-6382/aa8e6b
O. Patane, aLIGO LHO Logbook, https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=43177.
C. Pankow, Mitigation of the Instrumental Noise Transient in Gravitational-Wave Data Surrounding GW170817, Phys. Rev. D 98, 084016 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.084016
B. P. Abbott (Virgo, LIGO Scientific Collaboration), Observing Gravitational-Wave Transient GW150914 with Minimal Assumptions, Phys. Rev. D 93, 122004 (2016); PRVDAQ 2470-0010 10.1103/PhysRevD.93.122004
B. P. Abbott (Virgo, LIGO Scientific Collaboration) Phys. Rev. D 94, 069903(A) (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.069903
M. Cabero, Blip Glitches in Advanced LIGO Data, arXiv:1901.05093.
T. Bayes, An Essay toward Solving a Problem in the Doctrine of Chances, Phil. Trans. R. Soc. London 53, 370 (1764). PTRSAV 0370-2316 10.1098/rstl.1763.0053
E. T. Jaynes, in Probability Theory: The Logic of Science, edited by G. L. Bretthorst (Cambridge University Press, Cambridge, England, 2003).
C. Röver, R. Meyer, and N. Christensen, Bayesian Inference on Compact Binary Inspiral Gravitational Radiation Signals in Interferometric Data, Classical Quantum Gravity 23, 4895 (2006). CQGRDG 0264-9381 10.1088/0264-9381/23/15/009
M. van der Sluys, V. Raymond, I. Mandel, C. Röver, N. Christensen, V. Kalogera, R. Meyer, and A. Vecchio, Parameter Estimation of Spinning Binary Inspirals Using Markov-Chain Monte Carlo, Classical Quantum Gravity 25, 184011 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/18/184011
J. Veitch, Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALInference Software Library, Phys. Rev. D 91, 042003 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.042003
C. Pankow, P. Brady, E. Ochsner, and R. O'Shaughnessy, Novel Scheme for Rapid Parallel Parameter Estimation of Gravitational Waves from Compact Binary Coalescences, Phys. Rev. D 92, 023002 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.023002
J. Lange, R. O'Shaughnessy, and M. Rizzo, Rapid and Accurate Parameter Inference for Coalescing, Precessing Compact Binaries, arXiv:1805.10457.
P. A. R. Ade (Planck Collaboration), Planck 2015 Results. XIII. Cosmological Parameters, Astron. Astrophys. 594, A13 (2016). AAEJAF 0004-6361 10.1051/0004-6361/201525830
B. F. Schutz, Determining the Hubble Constant from Gravitational Wave Observations, Nature (London) 323, 310 (1986). NATUAS 0028-0836 10.1038/323310a0
N. Aghanim (Planck Collaboration), Planck 2018 Results. VI. Cosmological Parameters, arXiv:1807.06209.
For clarity, we use the names of the waveform models as defined in the LIGO Algorithm Library (LAL) [79], as well as in technical publications.
J. Lin, Divergence Measures Based on the Shannon Entropy, IEEE Trans. Inf. Theory 37, 145 (1991). IETTAW 0018-9448 10.1109/18.61115
In the LIGO Algorithm Library (LAL) [79], as well as in technical publications, these models are referred to as SEOBNRv4-ROM-NRTidal and IMRPhenomPv2-NRTidal.
E. Poisson, Gravitational Waves from Inspiraling Compact Binaries: The Quadrupole Moment Term, Phys. Rev. D 57, 5287 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.5287
I. Harry and T. Hinderer, Observing and Measuring the Neutron-Star Equation-of-State in Spinning Binary Neutron Star Systems, Classical Quantum Gravity 35, 145010 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aac7e3
K. Yagi and N. Yunes, Approximate Universal Relations for Neutron Stars and Quark Stars, Phys. Rep. 681, 1 (2017). PRPLCM 0370-1573 10.1016/j.physrep.2017.03.002
J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, C. D. Ott, M. Boyle, L. E. Kidder, H. P. Pfeiffer, and B. Szilágyi, Numerical Relativity Waveform Surrogate Model for Generically Precessing Binary Black Hole Mergers, Phys. Rev. D 96, 024058 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.024058
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration), Directly Comparing GW150914 with Numerical Solutions of Einstein's Equations for Binary Black Hole Coalescence, Phys. Rev. D 94, 064035 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.064035
J. Lange, Parameter Estimation Method That Directly Compares Gravitational Wave Observations to Numerical Relativity, Phys. Rev. D 96, 104041 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.104041
V. Varma and P. Ajith, Effects of Nonquadrupole Modes in the Detection and Parameter Estimation of Black Hole Binaries with Nonprecessing Spins, Phys. Rev. D 96, 124024 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.124024
J. C. Bustillo, S. Husa, A. M. Sintes, and M. Pürrer, Impact of Gravitational Radiation Higher Order Modes on Single Aligned-Spin Gravitational Wave Searches for Binary Black Holes, Phys. Rev. D 93, 084019 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.084019
P. Kumar, J. Blackman, S. E. Field, M. Scheel, C. R. Galley, M. Boyle, L. E. Kidder, H. P. Pfeiffer, B. Szilagyi, and S. A. Teukolsky, Constraining the Parameters of GW150914 & GW170104 with Numerical Relativity Surrogates, arXiv:1808.08004.
A. R. Williamson, J. Lange, R. O'Shaughnessy, J. A. Clark, P. Kumar, J. C. Bustillo, and J. Veitch, Systematic Challenges for Future Gravitational Wave Measurements of Precessing Binary Black Holes, Phys. Rev. D 96, 124041 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.124041
S. Vitale, D. Gerosa, C.-J. Haster, K. Chatziioannou, and A. Zimmerman, Impact of Bayesian Priors on the Characterization of Binary Black Hole Coalescences, Phys. Rev. Lett. 119, 251103 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.251103
V. Tiwari, S. Fairhurst, and M. Hannam, Constraining Black-Hole Spins with Gravitational Wave Observations, Astrophys. J. 868, 140 (2018). 10.3847/1538-4357/aae8df
M. C. Miller and J. M. Miller, The Masses and Spins of Neutron Stars and Stellar-Mass Black Holes, Phys. Rep. 548, 1 (2015). PRPLCM 0370-1573 10.1016/j.physrep.2014.09.003
Y. Huang, H. Middleton, K. K. Y. Ng, S. Vitale, and J. Veitch, Characterization of Low-Significance Gravitational-Wave Compact Binary Sources, Phys. Rev. D 98, 123021 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.123021