B. P. Abbott (LIGO Scientific and Virgo Collaborations), Tests of General Relativity with GW150914, Phys. Rev. Lett. 116, 221101 (2016); PRLTAO 0031-9007 10.1103/PhysRevLett.116.221101
B. P. Abbott (LIGO Scientific and Virgo Collaborations) Erratum, Phys. Rev. Lett. 121, 129902(E) (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.129902
B. P. Abbott (LIGO Scientific and Virgo Collaborations), Binary Black Hole Mergers in the first Advanced LIGO Observing Run, Phys. Rev. X 6, 041015 (2016); PRXHAE 2160-3308 10.1103/PhysRevX.6.041015
B. P. Abbott (LIGO Scientific and Virgo Collaborations) Erratum, Phys. Rev. X 8, 039903(E) (2018). PRXHAE 2160-3308 10.1103/PhysRevX.8.039903
B. P. Abbott (LIGO Scientific and Virgo Collaborations), GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017); PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101
B. P. Abbott (LIGO Scientific and Virgo Collaborations) Erratum, Phys. Rev. Lett. 121, 129901(E) (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.129901
B. P. Abbott (LIGO Scientific and Virgo Collaborations), GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119, 141101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.141101
B. P. Abbott (LIGO Scientific and Virgo Collaborations), Tests of General Relativity with GW170817, Phys. Rev. Lett. 123, 011102 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.011102
LIGO Scientific and Virgo Collaborations, GWTC-1, https://doi.org/10.7935/82H3-HH23 (2018).
B. P. Abbott (LIGO Scientific and Virgo Collaborations), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102
B. P. Abbott (LIGO Scientific and Virgo Collaborations), GW150914: First results from the search for binary black hole coalescence with Advanced LIGO, Phys. Rev. D 93, 122003 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.122003
B. P. Abbott (LIGO Scientific and Virgo Collaborations), GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241103
B. P. Abbott (LIGO Scientific and Virgo Collaborations), GW170608: Observation of a 19 solar-mass binary black hole coalescence, Astrophys. J. Lett. 851, L35 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa9f0c
B. P. Abbott (LIGO Scientific and Virgo Collaborations), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9, 031040 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.031040
B. P. Abbott (LIGO Scientific and Virgo Collaborations), Observing gravitational-wave transient GW150914 with minimal assumptions, Phys. Rev. D 93, 122004 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.122004
M. Vallisneri and N. Yunes, Stealth bias in gravitational-wave parameter estimation, Phys. Rev. D 87, 102002 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.102002
S. Vitale and W. Del Pozzo, How serious can the stealth bias be in gravitational wave parameter estimation?, Phys. Rev. D 89, 022002 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.022002
M. Okounkova, L. C. Stein, M. A. Scheel, and D. A. Hemberger, Numerical binary black hole mergers in dynamical Chern-Simons gravity: Scalar field, Phys. Rev. D 96, 044020 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.044020
H. Witek, L. Gualtieri, P. Pani, and T. P. Sotiriou, Black holes and binary mergers in scalar Gauss-Bonnet gravity: Scalar field dynamics, Phys. Rev. D 99, 064035 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.064035
M. Okounkova, L. C. Stein, M. A. Scheel, and S. A. Teukolsky, Numerical binary black hole collisions in dynamical Chern-Simons gravity, arXiv:1906.08789.
A. Bohé, Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors, Phys. Rev. D 95, 044028 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.044028
S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. Jiménez Forteza, and A. Bohé, Frequency-domain gravitational waves from nonprecessing black hole binaries. II. A phenomenological model for the advanced detector era, Phys. Rev. D 93, 044007 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044007
J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, D. A. Hemberger, P. Schmidt, and R. Smith, A surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers, Phys. Rev. D 95, 104023 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.104023
S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme, Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects, Phys. Rev. D 100, 024059 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.100.024059
B. P. Abbott (LIGO Scientific and Virgo Collaborations), Effects of waveform model systematics on the interpretation of GW150914, Classical Quantum Gravity 34, 104002 (2017). CQGRDG 0264-9381 10.1088/1361-6382/aa6854
LIGO Scientific and Virgo Collaborations, Data release for testing GR with GWTC-1, https://dcc.ligo.org/LIGO-P1900087/public (2019).
LIGO Scientific and Virgo Collaborations, Gravitational Wave Open Science Center, https://www.gw-openscience.org (2018).
S. Karki, The Advanced LIGO photon calibrators, Rev. Sci. Instrum. 87, 114503 (2016). RSINAK 0034-6748 10.1063/1.4967303
C. Cahillane, Calibration uncertainty for Advanced LIGO's first and second observing runs, Phys. Rev. D 96, 102001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.102001
A. Viets, Reconstructing the calibrated strain signal in the Advanced LIGO detectors, Classical Quantum Gravity 35, 095015 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aab658
D. Estevez, V1O2Repro2A h(t) reprocessing for Virgo O2 data, Virgo Technical Report No. VIR-0362A-18, 2018, https://tds.virgo-gw.eu/ql/?c=13254.
F. Acernese (Virgo Collaboration), Calibration of advanced Virgo and reconstruction of the gravitational wave signal (Equation presented) during the observing Run O2, Classical Quantum Gravity 35, 205004 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aadf1a
W. M. Farr, B. Farr, and T. Littenberg, Modelling calibration errors in CBC waveforms, LIGO Technical Report No. LIGO-T1400682, 2015, https://dcc.ligo.org/LIGO-T1400682/public.
J. Veitch, Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library, Phys. Rev. D 91, 042003 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.042003
B. P. Abbott (LIGO Scientific and Virgo Collaborations), Properties of the Binary Neutron Star Merger GW170817, Phys. Rev. X 9, 011001 (2019). PRXHAE 2160-3308 10.1103/PhysRevX.9.011001
B. P. Abbott (LIGO Scientific and Virgo Collaborations), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101
J. C. Driggers (LIGO Scientific Collaboration Instrument Science Authors), Improving astrophysical parameter estimation via offline noise subtraction for Advanced LIGO, Phys. Rev. D 99, 042001 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.042001
D. Davis, T. J. Massinger, A. P. Lundgren, J. C. Driggers, A. L. Urban, and L. K. Nuttall, Improving the sensitivity of advanced LIGO using noise subtraction, Classical Quantum Gravity 36, 055011 (2019). CQGRDG 0264-9381 10.1088/1361-6382/ab01c5
S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher, Coherent method for detection of gravitational wave bursts, Classical Quantum Gravity 25, 114029 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/11/114029
S. Klimenko, Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors, Phys. Rev. D 93, 042004 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.042004
A. Ghosh, N. K. Johnson-McDaniel, A. Ghosh, C. K. Mishra, P. Ajith, W. Del Pozzo, C. P. L. Berry, A. B. Nielsen, and L. London, Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes, Classical Quantum Gravity 35, 014002 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aa972e
M. Agathos, W. Del Pozzo, T. G. F. Li, C. Van Den Broeck, J. Veitch, and S. Vitale, TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries, Phys. Rev. D 89, 082001 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.082001
A. Zimmerman, C.-J. Haster, and K. Chatziioannou, On combining information from multiple gravitational wave sources, Phys. Rev. D 99, 124044 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.124044
M. Isi, K. Chatziioannou, and W. M. Farr, Hierarchical Test of General Relativity with Gravitational Waves, Phys. Rev. Lett. 123, 121101 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.123.121101
A. H. Nitz, PyCBC software, https://github.com/ligo-cbc/pycbc (2018).
T. Dal Canton, Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors, Phys. Rev. D 90, 082004 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.082004
S. A. Usman, The PyCBC search for gravitational waves from compact binary coalescence, Classical Quantum Gravity 33, 215004 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/21/215004
S. Sachdev, The GstLAL search analysis methods for compact binary mergers in Advanced LIGO's second and advanced Virgo's first observing runs, arXiv:1901.08580.
C. Messick, Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data, Phys. Rev. D 95, 042001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.042001
P. C. Peters and J. Mathews, Gravitational radiation from point masses in a Keplerian orbit, Phys. Rev. 131, 435 (1963). PHRVAO 0031-899X 10.1103/PhysRev.131.435
P. C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev. 136, B1224 (1964). PHRVAO 0031-899X 10.1103/PhysRev.136.B1224
T. Hinderer and S. Babak, Foundations of an effective-one-body model for coalescing binaries on eccentric orbits, Phys. Rev. D 96, 104048 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.104048
Z. Cao and W.-B. Han, Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism, Phys. Rev. D 96, 044028 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.044028
I. Hinder, L. E. Kidder, and H. P. Pfeiffer, Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory, Phys. Rev. D 98, 044015 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.044015
E. A. Huerta, Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers, Phys. Rev. D 97, 024031 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.024031
A. Klein, Y. Boetzel, A. Gopakumar, P. Jetzer, and L. de Vittori, Fourier domain gravitational waveforms for precessing eccentric binaries, Phys. Rev. D 98, 104043 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.104043
B. Moore, T. Robson, N. Loutrel, and N. Yunes, Towards a Fourier domain waveform for nonspinning binaries with arbitrary eccentricity, Classical Quantum Gravity 35, 235006 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aaea00
B. Moore and N. Yunes, A 3PN Fourier domain waveform for nonspinning binaries with moderate eccentricity, Classical Quantum Gravity 36, 185003 (2019). CQGRDG 0264-9381 10.1088/1361-6382/ab3778
S. Tiwari, G. Achamveedu, M. Haney, and P. Hemantakumar, Ready-to-use Fourier domain templates for compact binaries inspiraling along moderately eccentric orbits, Phys. Rev. D 99, 124008 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.124008
J. Samsing, Eccentric black hole mergers forming in globular clusters, Phys. Rev. D 97, 103014 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.103014
C. L. Rodriguez, P. Amaro-Seoane, S. Chatterjee, and F. A. Rasio, post-Newtonian Dynamics in Dense Star Clusters: Highly-Eccentric, Highly-Spinning, and Repeated Binary Black Hole Mergers, Phys. Rev. Lett. 120, 151101 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.151101
M. Zevin, J. Samsing, C. Rodriguez, C.-J. Haster, and E. Ramirez-Ruiz, Eccentric black hole mergers in dense star clusters: The role of binary-binary encounters, Astrophys. J. 871, 91 (2019). ASJOAB 0004-637X 10.3847/1538-4357/aaf6ec
C. L. Rodriguez, P. Amaro-Seoane, S. Chatterjee, K. Kremer, F. A. Rasio, J. Samsing, C. S. Ye, and M. Zevin, post-Newtonian dynamics in dense star clusters: Formation, masses, and merger rates of highly-eccentric black hole binaries, Phys. Rev. D 98, 123005 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.123005
S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J. Forteza, and A. Bohé, Frequency-domain gravitational waves from nonprecessing black hole binaries. I. New numerical waveforms and anatomy of the signal, Phys. Rev. D 93, 044006 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044006
M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Simple Model of Complete Precessing black hole-Binary Gravitational Waveforms, Phys. Rev. Lett. 113, 151101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.151101
A. Taracchini, Effective-one-body model for black hole binaries with generic mass ratios and spins, Phys. Rev. D 89, 061502 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.061502
S. Babak, A. Taracchini, and A. Buonanno, Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity, Phys. Rev. D 95, 024010 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.024010
J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, C. D. Ott, M. Boyle, L. E. Kidder, H. P. Pfeiffer, and B. Szilágyi, Numerical relativity waveform surrogate model for generically precessing binary black hole mergers, Phys. Rev. D 96, 024058 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.024058
V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D. Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer, Surrogate models for precessing binary black hole simulations with unequal masses, Phys. Rev. Research 1, 033015 (2019). 10.1103/PhysRevResearch.1.033015
I. Kamaretsos, M. Hannam, S. Husa, and B. S. Sathyaprakash, black hole hair loss: Learning about binary progenitors from ringdown signals, Phys. Rev. D 85, 024018 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.024018
L. London, D. Shoemaker, and J. Healy, Modeling ringdown: Beyond the fundamental quasinormal modes, Phys. Rev. D 90, 124032 (2014); PRVDAQ 1550-7998 10.1103/PhysRevD.90.124032
L. London, D. Shoemaker, and J. Healy Erratum, Phys. Rev. D 94, 069902(E) (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.069902
L. London, S. Khan, E. Fauchon-Jones, C. García, M. Hannam, S. Husa, X. Jiménez-Forteza, C. Kalaghatgi, F. Ohme, and F. Pannarale, First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing black hole Binaries, Phys. Rev. Lett. 120, 161102 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.161102
R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I. Hinder, and S. Ossokine, Enriching the symphony of gravitational waves from binary black holes by tuning higher harmonics, Phys. Rev. D 98, 084028 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.084028
V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E. Kidder, and H. P. Pfeiffer, Surrogate model of hybridized numerical relativity binary black hole waveforms, Phys. Rev. D 99, 064045 (2019). PRVDAQ 2470-0010 10.1103/PhysRevD.99.064045
V. Varma and P. Ajith, Effects of nonquadrupole modes in the detection and parameter estimation of black hole binaries with nonprecessing spins, Phys. Rev. D 96, 124024 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.124024
P. T. H. Pang, J. C. Bustillo, Y. Wang, and T. G. F. Li, Potential observations of false deviations from general relativity in gravitational wave signals from binary black holes, Phys. Rev. D 98, 024019 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.024019
LIGO Scientific and Virgo Collaborations, LALSuite software (2018), 10.7935/GT1W-FZ16.
N. J. Cornish and T. B. Littenberg, BayesWave: Bayesian inference for gravitational wave bursts and instrument glitches, Classical Quantum Gravity 32, 135012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/13/135012
T. B. Littenberg and N. J. Cornish, Bayesian inference for spectral estimation of gravitational wave detector noise, Phys. Rev. D 91, 084034 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.084034
T. A. Apostolatos, Search templates for gravitational waves from precessing and inspiraling binaries, Phys. Rev. D 52, 605 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.605
R. A. Fisher, Questions and answers, Am. Stat. 2, 30 (1948). 10.2307/2681650
A. Ghosh, Testing general relativity using golden black hole binaries, Phys. Rev. D 94, 021101(R) (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.021101
J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Rotating black holes: Locally nonrotating frames, energy extraction, and scalar synchrotron radiation, Astrophys. J. 178, 347 (1972). ASJOAB 0004-637X 10.1086/151796
J. Healy and C. O. Lousto, Remnant of binary black hole mergers: New simulations and peak luminosity studies, Phys. Rev. D 95, 024037 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.024037
F. Hofmann, E. Barausse, and L. Rezzolla, The final spin from binary black holes in quasi-circular orbits, Astrophys. J. Lett. 825, L19 (2016). AJLEEY 2041-8213 10.3847/2041-8205/825/2/L19
X. Jiménez-Forteza, D. Keitel, S. Husa, M. Hannam, S. Khan, and M. Pürrer, Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy, Phys. Rev. D 95, 064024 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.064024
N. K. Johnson-McDaniel, Determining the final spin of a binary black hole system including in-plane spins: Method and checks of accuracy, LIGO Technical Report No. LIGO-T1600168, 2016, https://dcc.ligo.org/LIGO-T1600168/public/main.
L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational-Radiation Damping of Compact Binary Systems to Second post-Newtonian Order, Phys. Rev. Lett. 74, 3515 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.74.3515
L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer, Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third post-Newtonian Order, Phys. Rev. Lett. 93, 091101 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.091101
L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer, Dimensional regularization of the third post-Newtonian gravitational wave generation from two point masses, Phys. Rev. D 71, 124004 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.124004
L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativity 17, 2 (2014). 1433-8351 10.12942/lrr-2014-2
K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash, Probing the nonlinear structure of general relativity with black hole binaries, Phys. Rev. D 74, 024006 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.74.024006
K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash, Testing post-Newtonian theory with gravitational wave observations, Classical Quantum Gravity 23, L37 (2006). CQGRDG 0264-9381 10.1088/0264-9381/23/9/L01
C. K. Mishra, K. G. Arun, B. R. Iyer, and B. S. Sathyaprakash, Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein telescope, Phys. Rev. D 82, 064010 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.064010
N. Yunes and F. Pretorius, Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework, Phys. Rev. D 80, 122003 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.80.122003
T. G. F. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani, and A. Vecchio, Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence, Phys. Rev. D 85, 082003 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.082003
T. G. F. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani, and A. Vecchio, Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations, J. Phys. Conf. Ser. 363, 012028 (2012). JPCSDZ 1742-6588 10.1088/1742-6596/363/1/012028
N. Cornish, L. Sampson, N. Yunes, and F. Pretorius, Gravitational wave tests of general relativity with the parametrized post-Einsteinian framework, Phys. Rev. D 84, 062003 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.84.062003
L. Sampson, N. Cornish, and N. Yunes, Mismodeling in gravitational-wave astronomy: The trouble with templates, Phys. Rev. D 89, 064037 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.064037
J. Meidam, Parametrized tests of the strong-field dynamics of general relativity using gravitational wave signals from coalescing binary black holes: Fast likelihood calculations and sensitivity of the method, Phys. Rev. D 97, 044033 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.044033
N. Yunes, K. Yagi, and F. Pretorius, Theoretical physics implications of the binary black hole mergers GW150914 and GW151226, Phys. Rev. D 94, 084002 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.084002
K. Yagi, L. C. Stein, and N. Yunes, Challenging the presence of scalar charge and dipolar radiation in binary pulsars, Phys. Rev. D 93, 024010 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.024010
K. Yagi and L. C. Stein, Black hole based tests of general relativity, Classical Quantum Gravity 33, 054001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/5/054001
E. Barausse, N. Yunes, and K. Chamberlain, Theory-Agnostic Constraints on black hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics, Phys. Rev. Lett. 116, 241104 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241104
K. G. Arun, Generic bounds on dipolar gravitational radiation from inspiralling compact binaries, Classical Quantum Gravity 29, 075011 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/7/075011
L. Sampson, N. Cornish, and N. Yunes, Gravitational wave tests of strong field general relativity with binary inspirals: Realistic injections and optimal model selection, Phys. Rev. D 87, 102001 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.102001
M. Kramer, Tests of general relativity from timing the double pulsar, Science 314, 97 (2006). SCIEAS 0036-8075 10.1126/science.1132305
N. Yunes and S. A. Hughes, Binary pulsar constraints on the parametrized post-Einsteinian framework, Phys. Rev. D 82, 082002 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.082002
S. Mirshekari, N. Yunes, and C. M. Will, Constraining generic Lorentz violation and the speed of the graviton with gravitational waves, Phys. Rev. D 85, 024041 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.024041
B. P. Abbott (LIGO Scientific, Virgo, Fermi-GBM, and INTEGRAL Collaborations), Gravitational waves and Gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. Lett. 848, L13 (2017). AJLEEY 2041-8213 10.3847/2041-8213/aa920c
C. M. Will, Bounding the mass of the graviton using gravitational wave observations of inspiralling compact binaries, Phys. Rev. D 57, 2061 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.2061
G. Calcagni, Fractal Universe and Quantum Gravity, Phys. Rev. Lett. 104, 251301 (2010). PRLTAO 0031-9007 10.1103/PhysRevLett.104.251301
G. Amelino-Camelia, Doubly special relativity, Nature (London) 418, 34 (2002). NATUAS 0028-0836 10.1038/418034a
P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79, 084008 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.084008
A. S. Sefiedgar, K. Nozari, and H. R. Sepangi, Modified dispersion relations in extra dimensions, Phys. Lett. B 696, 119 (2011). PYLBAJ 0370-2693 10.1016/j.physletb.2010.11.067
V. A. Kostelecký and M. Mewes, Testing local Lorentz invariance with gravitational waves, Phys. Lett. B 757, 510 (2016). PYLBAJ 0370-2693 10.1016/j.physletb.2016.04.040
P. A. R. Ade (Planck Collaboration), Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13 (2016). AAEJAF 0004-6361 10.1051/0004-6361/201525830
N. Aghanim (Planck Collaboration), Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209.
G. Amelino-Camelia, M. Arzano, Y. Ling, and G. Mandanici, black hole thermodynamics with modified dispersion relations and generalized uncertainty principles, Classical Quantum Gravity 23, 2585 (2006). CQGRDG 0264-9381 10.1088/0264-9381/23/7/022
G. Calcagni, Lorentz violations in multifractal space-times, Eur. Phys. J. C 77, 291 (2017). EPCFFB 1434-6044 10.1140/epjc/s10052-017-4841-6
L. Bernus, O. Minazzoli, A. Fienga, M. Gastineau, J. Laskar, and P. Deram, Constraining the Mass of the Graviton with the Planetary Ephemeris INPOP, Phys. Rev. Lett., 123, 161103 (2019). 10.1103/PhysRevLett.123.161103
C. M. Will, Solar system vs. gravitational-wave bounds on the graviton mass, Classical Quantum Gravity 35, 17LT01 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aad13c
C. de Rham, J. T. Deskins, A. J. Tolley, and S.-Y. Zhou, Graviton mass bounds, Rev. Mod. Phys. 89, 025004 (2017). RMPHAT 0034-6861 10.1103/RevModPhys.89.025004
D. B. Rubin, The Bayesian bootstrap, Ann. Stat. 9, 130 (1981). ASTSC7 0090-5364 10.1214/aos/1176345338
D. M. Eardley, D. L. Lee, and A. P. Lightman, Gravitational-wave observations as a tool for testing relativistic gravity, Phys. Rev. D 8, 3308 (1973). PRVDAQ 0556-2821 10.1103/PhysRevD.8.3308
K. Chatziioannou, N. Yunes, and N. Cornish, Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content, Phys. Rev. D 86, 022004 (2012); PRVDAQ 1550-7998 10.1103/PhysRevD.86.022004
K. Chatziioannou, N. Yunes, and N. Cornish Erratum, Phys. Rev. D 95, 129901(E) (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.129901
M. Isi, M. Pitkin, and A. J. Weinstein, Probing dynamical gravity with the polarization of continuous gravitational waves, Phys. Rev. D 96, 042001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.042001
T. Callister, A. S. Biscoveanu, N. Christensen, M. Isi, A. Matas, O. Minazzoli, T. Regimbau, M. Sakellariadou, J. Tasson, and E. Thrane, Polarization-Based Tests of Gravity with the Stochastic Gravitational-Wave Background, Phys. Rev. X 7, 041058 (2017). PRXHAE 2160-3308 10.1103/PhysRevX.7.041058
M. Isi and A. J. Weinstein, Probing gravitational wave polarizations with signals from compact binary coalescences, LIGO Tech. Note No. LIGO-P1700276, 2017, https://dcc.ligo.org/LIGO-P1700276/public.
A. Błaut, Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity, Phys. Rev. D 85, 043005 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.043005
B. P. Abbott (KAGRA, LIGO Scientific, and Virgo Collaborations), Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Relativity 21, 3 (2018). 1433-8351 10.1007/s41114-018-0012-9
B. P. Abbott (LIGO Scientific and Virgo Collaborations), Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence, Phys. Rev. D 94, 064035 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.064035
J. Lange, Parameter estimation method that directly compares gravitational wave observations to numerical relativity, Phys. Rev. D 96, 104041 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.104041
G. Ashton, Bilby: A user-friendly Bayesian inference library for gravitational-wave astronomy, Astrophys. J. Suppl. Ser. 241, 27 (2019). APJSA2 1538-4365 10.3847/1538-4365/ab06fc