B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, Fermi-GBM, and INTEGRAL), Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, Astrophys. J. 848, L13 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa920c
D. A. Coulter, LIGO/Virgo G298048: Potential Optical Counterpart Discovered by Swope Telescope, GCN 21529, 1 (2017).
D. A. Coulter, Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source, Science 358, 1556 (2017). SCIEAS 0036-8075 10.1126/science.aap9811
I. Arcavi, LIGO/Virgo G298048: Las Cumbres Observatory Detection of the Possible Optical Counterpart in NGC 4993, GCN 21538, 1 (2017).
N. R. Tanvir, LIGO/Virgo G298048: VISTA/VIRCAM Detection of Candidate Counterpart, GCN 21544, 1 (2017).
V. M. Lipunov, LIGO/Virgo G298048: Master Observations of the NGC 4993, GCN 21546, 1 (2017).
B. P. Abbott [GROND, SALT Group, OzGrav, CAASTROs, DFN, DES, INTEGRAL, Virgo, Insight-HXMT, MAXI Team, J-GEM, RATIR, ATLAS, IceCube, LWA, ePESSTO, GRAWITA, RIMAS, SKA South Africa/MeerKAT, H.E.S.S., Fermi Large Area Telescope, 1M2H Team, IKI-GW Follow-up, Fermi GBM, Pi of Sky, DWF (Deeper Wider Faster Program), MASTER, AstroSat Cadmium Zinc Telluride Imager Team, Swift, Pierre Auger, ASKAP, VINROUGE, JAGWAR, Chandra Team at McGill University, TTU-NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3, TOROS, Pan-STARRS, NuSTAR, BOOTES, CaltechNRAO, LIGO Scientific, High Time Resolution Universe Survey, Nordic Optical Telescope, Las Cumbres Observatory Group, TZAC Consortium, LOFAR, IPN, DLT40, Texas Tech University, HAWC, ANTARES, KU, Dark Energy Camera GW-EM, CALET, Euro VLBI Team, ALMA], Multi-messenger Observations of a Binary Neutron Star Merger, Astrophys. J. 848, L12 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa91c9
Li-Xin Li and B. Paczynski, Transient Events from Neutron Star Mergers, Astrophys. J. 507, L59 (1998). ASJOAB 1538-4357 10.1086/311680
B. D. Metzger, G. Martinez-Pinedo, S. Darbha, E. Quataert, A. Arcones, D. Kasen, R. Thomas, P. Nugent, I. V. Panov, and N. T. Zinner, Electromagnetic Counterparts of Compact Object Mergers Powered by the Radioactive Decay of (Equation presented)-Process Nuclei, Mon. Not. R. Astron. Soc. 406, 2650 (2010). MNRAA4 0035-8711 10.1111/j.1365-2966.2010.16864.x
J. Barnes and D. Kasen, Effect of a High Opacity on the Light Curves of Radioactively Powered Transients from Compact Object Mergers, Astrophys. J. 775, 18 (2013). ASJOAB 1538-4357 10.1088/0004-637X/775/1/18
M. Tanaka and K. Hotokezaka, Radiative Transfer Simulations of Neutron Star Merger Ejecta, Astrophys. J. 775, 113 (2013). ASJOAB 1538-4357 10.1088/0004-637X/775/2/113
D. Grossman, O. Korobkin, S. Rosswog, and T. Piran, The Long-Term Evolution of Neutron Star Merger Remnants II. Radioactively Powered Transients, Mon. Not. R. Astron. Soc. 439, 757 (2014). MNRAA4 0035-8711 10.1093/mnras/stt2503
P. A. Evans, Swift and NuSTAR Observations of GW170817: Detection of a Blue Kilonova, Science 358, 1565 (2017). SCIEAS 0036-8075 10.1126/science.aap9580
C. D. Kilpatrick, Electromagnetic Evidence that SSS17a Is the Result of a Binary Neutron Star Merger, Science 358, 1583 (2017). SCIEAS 0036-8075 10.1126/science.aaq0073
E. Pian, Spectroscopic Identification of (Equation presented)-Process Nucleosynthesis in a Double Neutron Star Merger, Nature (London) 551, 67 (2017). NATUAS 0028-0836 10.1038/nature24298
S. J. Smartt, A Kilonova as the Electromagnetic Counterpart to a Gravitational-Wave Source, Nature (London) 551, 75 (2017). NATUAS 0028-0836 10.1038/nature24303
N. R. Tanvir, The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars, Astrophys. J. 848, L27 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa90b6
I. Arcavi, Optical Emission from a Kilonova Following a Gravitational-Wave-Detected Neutron-Star Merger, Nature (London) 551, 64 (2017). NATUAS 0028-0836 10.1038/nature24291
P. S. Cowperthwaite, The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-Infrared Light Curves and Comparison to Kilonova Models, Astrophys. J. 848, L17 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa8fc7
M. R. Drout, Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for (Equation presented)-Process Nucleosynthesis, Science 358, 1570 (2017). SCIEAS 0036-8075 10.1126/science.aaq0049
C. McCully, The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, During the First Four Days, Astrophys. J. 848, L32 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa9111
S. Valenti, D. J. Sand, S. Yang, E. Cappellaro, L. Tartaglia, A. Corsi, S. W. Jha, D. E. Reichart, J. Haislip, and V. Kouprianov, The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck, Astrophys. J. 848, L24 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa8edf
I. Andreoni, Follow-up of GW170817 and Its Electromagnetic Counterpart by Australian-led Observing Programs, Pub. Astron. Soc. Aust. 34, e069 (2017). PASAFO 1323-3580 10.1017/pasa.2017.65
M. Nicholl, The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta, Astrophys. J. 848, L18 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa9029
V. A. Villar, The Combined Ultraviolet, Optical, and Near-Infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications, Astrophys. J. 851, L21 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa9c84
A. Perego, D. Radice, and S. Bernuzzi, AT 2017gfo: An Anisotropic and Three-Component Kilonova Counterpart of GW170817, Astrophys. J. 850, L37 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa9ab9
L. S. Finn and D. F. Chernoff, Observing Binary Inspiral in Gravitational Radiation: One Interferometer, Phys. Rev. D 47, 2198 (1993). PRVDAQ 0556-2821 10.1103/PhysRevD.47.2198
T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Tidal Deformability of Neutron Stars with Realistic Equations of State and Their Gravitational Wave Signatures in Binary Inspiral, Phys. Rev. D 81, 123016 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.123016
T. Damour, A. Nagar, and L. Villain, Measurability of the Tidal Polarizability of Neutron Stars in Late-Inspiral Gravitational-Wave Signals, Phys. Rev. D 85, 123007 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.123007
W. Del Pozzo, T. G. F. Li, M. Agathos, C. Van Den Broeck, and S. Vitale, Demonstrating the Feasibility of Probing the Neutron Star Equation of State with Second-Generation Gravitational Wave Detectors, Phys. Rev. Lett. 111, 071101 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.071101
M. Agathos, J. Meidam, W. Del Pozzo, T. G. F. Li, M. Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck, Constraining the Neutron Star Equation of State with Gravitational Wave Signals from Coalescing Binary Neutron Stars, Phys. Rev. D 92, 023012 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.023012
I. Harry and T. Hinderer, Observing and Measuring the Neutron-Star Equation-of-State in Spinning Binary Neutron Star Systems, Classical Quantum Gravity 35, 145010 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aac7e3
F. Acernese (Virgo Collaboration) Calibration of Advanced Virgo and Reconstruction of the Gravitational Wave Signal h(t) during the Science Run O2, arXiv:1807.03275.
N. J. Cornish and T. B. Littenberg, BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches, Classical Quantum Gravity 32, 135012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/13/135012
K. L. Dooley, GEO 600 and the GEO-HF Upgrade Program: Successes and Challenges, Classical Quantum Gravity 33, 075009 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/7/075009
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817, Astrophys. J. 851, L16 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa9a35
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW170817: Measurements of Neutron Star Radii and Equation of State, Phys. Rev. Lett. 121, 161101 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.161101
C. Röver, R. Meyer, and N. Christensen, Bayesian Inference on Compact Binary Inspiral Gravitational Radiation Signals in Interferometric Data, Classical Quantum Gravity 23, 4895 (2006). CQGRDG 0264-9381 10.1088/0264-9381/23/15/009
M. van der Sluys, V. Raymond, I. Mandel, C. Röver, N. Christensen, V. Kalogera, R. Meyer, and A. Vecchio, Parameter Estimation of Spinning Binary Inspirals Using Markov-Chain Monte Carlo, Classical Quantum Gravity 25, 184011 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/18/184011
J. Veitch, Parameter Estimation for Compact Binaries with Ground-based Gravitational-Wave Observations Using the LALInference Software Library, Phys. Rev. D 91, 042003 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.042003
LIGO Scientific Collaboration and Virgo Collaboration, LALSuite, https://git.ligo.org/lscsoft/lalsuite/tree/lalinference-o2 (2017).
T. B. Littenberg and N. J. Cornish, Bayesian Inference for Spectral Estimation of Gravitational Wave Detector Noise, Phys. Rev. D 91, 084034 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.084034
J. C. Driggers, Improving Astrophysical Parameter Estimation via Offline Noise Subtraction for Advanced LIGO, arXiv:1806.00532.
J. C. Driggers, M. Evans, K. Pepper, and R. Adhikari, Active Noise Cancellation in a Suspended Interferometer, Rev. Sci. Instrum. 83, 024501 (2012). RSINAK 0034-6748 10.1063/1.3675891
G. D. Meadors, K. Kawabe, and K. Riles, Increasing LIGO Sensitivity by Feedforward Subtraction of Auxiliary Length Control Noise, Classical Quantum Gravity 31, 105014 (2014). CQGRDG 0264-9381 10.1088/0264-9381/31/10/105014
V. Tiwari, Regression of Environmental Noise in LIGO Data, Classical Quantum Gravity 32, 165014 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/16/165014
C. Pankow, Mitigation of the Instrumental Noise Transient in Gravitational-Wave Data Surrounding GW170817, Phys. Rev. D 98, 084016 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.084016
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett. 119, 141101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.141101
C. Cahillane (LIGO Scientific Collaboration), Calibration Uncertainty for Advanced LIGO's First and Second Observing Runs, Phys. Rev. D 96, 102001 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.102001
A. Viets, Reconstructing the Calibrated Strain Signal in the Advanced LIGO Detectors, Classical Quantum Gravity 35, 095015 (2018). CQGRDG 0264-9381 10.1088/1361-6382/aab658
B. P. Abbott (LIGO Scientific), Calibration of the Advanced LIGO Detectors for the Discovery of the Binary Black-Hole Merger GW150914, Phys. Rev. D 95, 062003 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.062003
S. Vitale, W. Del Pozzo, T. G. F. Li, C. Van Den Broeck, I. Mandel, B. Aylott, and J. Veitch, Effect of Calibration Errors on Bayesian Parameter Estimation for Gravitational Wave Signals from Inspiral Binary Systems in the Advanced Detectors Era, Phys. Rev. D 85, 064034 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.064034
W. M. Farr, B. Farr, and T. Littenberg, Modelling Calibration Errors in CBC Waveforms, Technical Report No. LIGO-T1400682 (LIGO Project, 2015).
I. Bartos, R. Bork, M. Factourovich, J. Heefner, S. Marka, Z. Marka, Z. Raics, P. Schwinberg, and D. Sigg, The Advanced LIGO Timing System, Classical Quantum Gravity 27, 084025 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084025
B. S. Sathyaprakash and S. V. Dhurandhar, Choice of Filters for the Detection of Gravitational Waves from Coalescing Binaries, Phys. Rev. D 44, 3819 (1991). PRVDAQ 0556-2821 10.1103/PhysRevD.44.3819
L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G. Wiseman, Gravitational Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order, Phys. Rev. Lett. 74, 3515 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.74.3515
T. Damour, P. Jaranowski, and G. Schaefer, Dimensional Regularization of the Gravitational Interaction of Point Masses, Phys. Lett. B 513, 147 (2001). PYLBAJ 0370-2693 10.1016/S0370-2693(01)00642-6
W. D. Goldberger and I. Z. Rothstein, An Effective Field Theory of Gravity for Extended Objects, Phys. Rev. D 73, 104029 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.73.104029
L. Blanchet, T. Damour, G. Esposito-Farese, and B.R. Iyer, Dimensional Regularization of the Third Post-Newtonian Gravitational Wave Generation from Two Point Masses, Phys. Rev. D 71, 124004 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.124004
L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Relativity 17, 2 (2014). 1433-8351 10.12942/lrr-2014-2
A. Boh, S. Marsat, and L. Blanchet, Next-to-Next-to-Leading Order Spin-Orbit Effects in the Gravitational Wave Flux and Orbital Phasing of Compact Binaries, Classical Quantum Gravity 30, 135009 (2013). CQGRDG 0264-9381 10.1088/0264-9381/30/13/135009
K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Higher-Order Spin Effects in the Amplitude and Phase of Gravitational Waveforms Emitted by Inspiraling Compact Binaries: Ready-to-use Gravitational Waveforms, Phys. Rev. D 79, 104023 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.104023
B. Mikoczi, M. Vasuth, and L. A. Gergely, Self-interaction Spin Effects in Inspiralling Compact Binaries, Phys. Rev. D 71, 124043 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.124043
A. Boh, G. Faye, S. Marsat, and E. K. Porter, Quadratic-in-Spin Effects in the Orbital Dynamics and Gravitational-Wave Energy Flux of Compact Binaries at the 3PN Order, Classical Quantum Gravity 32, 195010 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/19/195010
C. K. Mishra, A. Kela, K. G. Arun, and G. Faye, Ready-to-Use Post-Newtonian Gravitational Waveforms for Binary Black Holes with Nonprecessing Spins: An Update, Phys. Rev. D 93, 084054 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.084054
J. Vines, É. É. Flanagan, and T. Hinderer, Post-1-Newtonian Tidal Effects in the Gravitational Waveform from Binary Inspirals, Phys. Rev. D 83, 084051 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.83.084051
A. Bohé, Improved Effective-One-Body Model of Spinning, Nonprecessing Binary Black Holes for the Era of Gravitational-Wave Astrophysics with Advanced Detectors, Phys. Rev. D 95, 044028 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.044028
M. Pürrer, Frequency Domain Reduced Order Models for Gravitational Waves from Aligned-Spin Compact Binaries, Classical Quantum Gravity 31, 195010 (2014). CQGRDG 0264-9381 10.1088/0264-9381/31/19/195010
T. Dietrich, S. Bernuzzi, and W. Tichy, Closed-form Tidal Approximants for Binary Neutron Star Gravitational Waveforms Constructed from High-Resolution Numerical Relativity Simulations, Phys. Rev. D 96, 121501 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.121501
T. Dietrich, Matter Imprints in Waveform Models for Neutron Star Binaries: Tidal and Self-spin Effects, arXiv:1804.02235.
S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J. Forteza, and A. Bohé, Frequency-Domain Gravitational Waves from Nonprecessing Black-Hole Binaries. I. New Numerical Waveforms and Anatomy of the Signal, Phys. Rev. D 93, 044006 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044006
S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza, and A. Bohé, Frequency-Domain Gravitational Waves from Non-precessing Black-Hole Binaries. II. A Phenomenological Model for the Advanced Detector Era, Phys. Rev. D 93, 044007 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.044007
M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms, Phys. Rev. Lett. 113, 151101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.113.151101
E. Poisson, Gravitational Waves from Inspiraling Compact Binaries: The Quadrupole-Moment Term, Phys. Rev. D 57, 5287 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.5287
S. Bernuzzi, A. Nagar, T. Dietrich, and T. Damour, Modeling the Dynamics of Tidally Interacting Binary Neutron Stars up to the Merger, Phys. Rev. Lett. 114, 161103 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.161103
Tanja Hinderer, Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach, Phys. Rev. Lett. 116, 181101 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.181101
T. Dietrich and T. Hinderer, Comprehensive Comparison of Numerical Relativity and Effective-One-Body Results to Inform Improvements in Waveform Models for Binary Neutron Star Systems, Phys. Rev. D 95, 124006 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.124006
A. Nagar, Time-Domain Effective-One-Body Gravitational Waveforms for Coalescing Compact Binaries with Nonprecessing Spins, Tides and Self-spin Effects, Phys. Rev. D 98, 104052 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.104052
C. Pankow, P. Brady, E. Ochsner, and R. O'Shaughnessy, Novel Scheme for Rapid Parallel Parameter Estimation of Gravitational Waves from Compact Binary Coalescences, Phys. Rev. D 92, 023002 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.023002
J. Lange, R. O'Shaughnessy, and M. Rizzo, Rapid and Accurate Parameter Inference for Coalescing, Precessing Compact Binaries, arXiv:1805.10457.
L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer, Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order, Phys. Rev. Lett. 93, 091101 (2004). PRLTAO 0031-9007 10.1103/PhysRevLett.93.091101
T. Damour and A. Nagar, Effective One Body Description of Tidal Effects in Inspiralling Compact Binaries, Phys. Rev. D 81, 084016 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.084016
D. Bini, T. Damour, and G. Faye, Effective Action Approach to Higher-Order Relativistic Tidal Interactions in Binary Systems and Their Effective One Body Description, Phys. Rev. D 85, 124034 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.124034
T. Dietrich, S. Bernuzzi, B. Brügmann, and W. Tichy, High-Resolution Numerical Relativity Simulations of Spinning Binary Neutron Star Mergers, arXiv:1803.07965.
A. Taracchini, Effective-One-Body Model for Black-Hole Binaries with Generic Mass Ratios and Spins, Phys. Rev. D 89, 061502 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.061502
E. Poisson, Gravitational Waves from Inspiraling Compact Binaries: The Quadrupole Moment Term, Phys. Rev. D 57, 5287 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.5287
K. Yagi and N. Yunes, Approximate Universal Relations for Neutron Stars and Quark Stars, Phys. Rep. 681, 1 (2017). PRPLCM 0370-1573 10.1016/j.physrep.2017.03.002
C. Cutler and É. É. Flanagan, Gravitational Waves from Merging Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Wave Form?, Phys. Rev. D 49, 2658 (1994). PRVDAQ 0556-2821 10.1103/PhysRevD.49.2658
E. Poisson and C. M. Will, Gravitational Waves from Inspiraling Compact Binaries: Parameter Estimation Using Second Post-Newtonian Wave Forms, Phys. Rev. D 52, 848 (1995). PRVDAQ 0556-2821 10.1103/PhysRevD.52.848
A. Krolak and B. F. Schutz, Coalescing Binaries-Probe of the Universe, Gen. Relativ. Gravit. 19, 1163 (1987). GRGVA8 0001-7701 10.1007/BF00759095
A. J. Levan, The Environment of the Binary Neutron Star Merger GW170817, Astrophys. J. 848, L28 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa905f
J. Hjorth, A. J. Levan, N. R. Tanvir, J. D. Lyman, R. Wojtak, S. L. Schrøder, I. Mandel, C. Gall, and S. H. Bruun, The Distance to NGC 4993: The Host Galaxy of the Gravitational-Wave Event GW170817, Astrophys. J. 848, L31 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa9110
J. W. T. Hessels, S. M. Ransom, I. H. Stairs, P. C. C. Freire, V. M. Kaspi, and F. Camilo, A Radio Pulsar Spinning at 716 Hz, Science 311, 1901 (2006). SCIEAS 0036-8075 10.1126/science.1123430
M. Burgay, An Increased Estimate of the Merger Rate of Double Neutron Stars from Observations of a Highly Relativistic System, Nature (London) 426, 531 (2003). NATUAS 0028-0836 10.1038/nature02124
K. Stovall, PALFA Discovery of a Highly Relativistic Double Neutron Star Binary, Astrophys. J. 854, L22 (2018). ASJOAB 1538-4357 10.3847/2041-8213/aaad06
K. Yagi and N. Yunes, Binary Love Relations, Classical Quantum Gravity 33, 13LT01 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/13/13LT01
K. Yagi and N. Yunes, Approximate Universal Relations Among Tidal Parameters for Neutron Star Binaries, Classical Quantum Gravity 34, 015006 (2017). CQGRDG 0264-9381 10.1088/1361-6382/34/1/015006
K. Chatziioannou, C.-J. Haster, and A. Zimmerman, Measuring the Neutron Star Tidal Deformability with Equation-of-State-Independent Relations and Gravitational Waves, Phys. Rev. D 97, 104036 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.97.104036
T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne, Spin Induced Orbital Precession and Its Modulation of the Gravitational Wave Forms from Merging Binaries, Phys. Rev. D 49, 6274 (1994). PRVDAQ 0556-2821 10.1103/PhysRevD.49.6274
B. Farr, Parameter Estimation on Gravitational Waves from Neutron-Star Binaries with Spinning Components, Astrophys. J. 825, 116 (2015). ASJOAB 1538-4357 10.3847/0004-637X/825/2/116
B. P. Abbott (LIGO Scientific Collaboration, VINROUGE, Las Cumbres Observatory, DES, DLT40, Virgo Collaboration, 1M2H, Dark Energy Camera GW-E, and MASTER), A Gravitational-Wave Standard Siren Measurement of the Hubble Constant, Nature (London) 551, 85 (2017). NATUAS 0028-0836 10.1038/nature24471
S. Nissanke, D. E. Holz, S. A. Hughes, N. Dalal, and J. L. Sievers, Exploring Short Gamma-Ray Bursts as Gravitational-Wave Standard Sirens, Astrophys. J. 725, 496 (2010). ASJOAB 1538-4357 10.1088/0004-637X/725/1/496
M. Cantiello, A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations, Astrophys. J. 854, L31 (2018). ASJOAB 1538-4357 10.3847/2041-8213/aaad64
C. Guidorzi, Improved Constraints on (Equation presented) from a Combined Analysis of Gravitational-Wave and Electromagnetic Emission from GW170817, Astrophys. J. 851, L36 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aaa009
I. Mandel, The Orbit of GW170817 Was Inclined by Less Than 28 to the Line of Sight, Astrophys. J. 853, L12 (2018). ASJOAB 1538-4357 10.3847/2041-8213/aaa6c1
D. Finstad, S. De, D. A. Brown, E. Berger, and C. M. Biwer, Measuring the Viewing Angle of GW170817 with Electromagnetic and Gravitational Waves, Astrophys. J. 860, L2 (2018). ASJOAB 1538-4357 10.3847/2041-8213/aac6c1
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 241102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241102
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Binary Black Hole Mergers in the First Advanced LIGO Observing Run, Phys. Rev. X 6, 041015 (2016). PRXHAE 2160-3308 10.1103/PhysRevX.6.041015
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Effects of Waveform Model Systematics on the Interpretation of GW150914, Classical Quantum Gravity 34, 104002 (2017). CQGRDG 0264-9381 10.1088/1361-6382/aa6854
E. Baird, S. Fairhurst, M. Hannam, and P. Murphy, Degeneracy between Mass and Spin in Black-Hole-Binary Waveforms, Phys. Rev. D 87, 024035 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.87.024035
J. Antoniadis, T. M. Tauris, F. Özel, E. Barr, D. J. Champion, and P. C. C. Freire, The Millisecond Pulsar Mass Distribution: Evidence for Bimodality and Constraints on the Maximum Neutron Star Mass, arXiv:1605.01665.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), On the Progenitor of Binary Neutron Star Merger GW170817, Astrophys. J. 850, L40 (2017). ASJOAB 1538-4357 10.3847/2041-8213/aa93fc
A similar contour as that displayed in Fig. 4 of Ref. [3] was broader as a result of not using the full information about the redshift to the source to calculate the source-frame masses.
J. Lense and H. Thirring, Über den Einflußder Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Phys. Z. 19, 156 (1918). PHZTAO 0369-982X
B. Mashhoon, F. W. Hehl, and D. S. Theiss, On the Gravitational Effects of Rotating Masses-The Thirring-Lense Papers, Gen. Relativ. Gravit. 16, 711 (1984). GRGVA8 0001-7701 10.1007/BF00762913
J. D. Kaplan, D. A. Nichols, and K. S. Thorne, Post-Newtonian Approximation in Maxwell-like Form, Phys. Rev. D 80, 124014 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.80.124014
M. Campanelli, C. O. Lousto, and Y. Zlochower, Spinning-Black-Hole Binaries: The Orbital Hang Up, Phys. Rev. D 74, 041501 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.74.041501
T. Damour, Coalescence of Two Spinning Black Holes: An Effective One-Body Approach, Phys. Rev. D 64, 124013 (2001). PRVDAQ 0556-2821 10.1103/PhysRevD.64.124013
P. Ajith, Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Non-precessing Spins, Phys. Rev. Lett. 106, 241101 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.241101
L. Santamaría, F. Ohme, P. Ajith, B. Brügmann, N. Dorband, Matching Post-Newtonian and Numerical Relativity Waveforms: Systematic Errors and a New Phenomenological Model for Non-precessing Black Hole Binaries, Phys. Rev. D 82, 064016 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.064016
L. E. Kidder, C. M. Will, and A. G. Wiseman, Spin Effects in the Inspiral of Coalescing Compact Binaries, Phys. Rev. D 47, R4183 (1993). PRVDAQ 0556-2821 10.1103/PhysRevD.47.R4183
P. Ajith, Addressing the Spin Question in Gravitational-Wave Searches: Waveform Templates for Inspiralling Compact Binaries with Nonprecessing Spins, Phys. Rev. D 84, 084037 (2011). PRVDAQ 1550-7998 10.1103/PhysRevD.84.084037
L. Blanchet, T. Damour, and B. R. Iyer, Gravitational Waves from Inspiralling Compact Binaries: Energy Loss and Wave Form to Second Post-Newtonian Order, Phys. Rev. D 51, 5360 (1995); PRVDAQ 0556-2821 10.1103/PhysRevD.51.5360
L. Blanchet, T. Damour, and B. R. Iyer Phys. Rev. D 54, 1860 (1996). PRVDAQ 0556-2821 10.1103/PhysRevD.54.1860
E. Racine, Analysis of Spin Precession in Binary Black Hole Systems Including Quadrupole-Monopole Interaction, Phys. Rev. D 78, 044021 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.78.044021
S. Vitale, R. Lynch, J. Veitch, V. Raymond, and R. Sturani, Measuring the Spin of Black Holes in Binary Systems Using Gravitational Waves, Phys. Rev. Lett. 112, 251101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.251101
S. Vitale, R. Lynch, V. Raymond, R. Sturani, J. Veitch, and P. Graff, Parameter Estimation for Heavy Binary-Black Holes with Networks of Second-Generation Gravitational-Wave Detectors, Phys. Rev. D 95, 064053 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.064053
P. Schmidt, F. Ohme, and M. Hannam, Towards Models of Gravitational Waveforms from Generic Binaries II: Modelling Precession Effects with a Single Effective Precession Parameter, Phys. Rev. D 91, 024043 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.024043
K. K. Y. Ng, S. Vitale, A. Zimmerman, K. Chatziioannou, D. Gerosa, and C.-J. Haster, Gravitational-Wave Astrophysics with Effective-Spin Measurements: Asymmetries and Selection Biases, Phys. Rev. D 98, 083007 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.083007
É. É. Flanagan and T. Hinderer, Constraining Neutron-Star Tidal Love Numbers with Gravitational-Wave Detectors, Phys. Rev. D 77, 021502 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.77.021502
J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman, Constraints on a Phenomenologically Parametrized Neutron-Star Equation of State, Phys. Rev. D 79, 124032 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.124032
Reference [3] connected these high-density EOS fits to a single, low-density polytrope. Here, we use the four-piece low-density polytrope fit described in Ref. [136]. The choice of low-density EOS can change the curves shown here by about 5%.
L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey, B. F. Farr, T. B. Littenberg, and V. Raymond, Systematic and Statistical Errors in a Bayesian Approach to the Estimation of the Neutron-Star Equation of State Using Advanced Gravitational Wave Detectors, Phys. Rev. D 89, 103012 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.103012
J. Steinhoff, T. Hinderer, A. Buonanno, and A. Taracchini, Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian, Phys. Rev. D 94, 104028 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.104028
T. Dietrich and T. Hinderer, Comprehensive Comparison of Numerical Relativity and Effective-One-Body Results to Inform Improvements in Waveform Models for Binary Neutron Star Systems, Phys. Rev. D 95, 124006 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.124006
S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger, and C. M. Biwer, Constraining the Nuclear Equation of State with GW170817, Phys. Rev. Lett. 121, 091102 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.091102
B. D. Lackey and L. Wade, Reconstructing the Neutron-Star Equation of State with Gravitational-Wave Detectors from a Realistic Population of Inspiralling Binary Neutron Stars, Phys. Rev. D 91, 043002 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.043002
M. F. Carney, L. E. Wade, and B. S. Irwin, Comparing Two Models for Measuring the Neutron Star Equation of State from Gravitational-Wave Signals, Phys. Rev. D 98, 063004 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.063004
M. Shibata and K. Taniguchi, Merger of Binary Neutron Stars to a Black Hole: Disk Mass, Short Gamma-Ray Bursts, and Quasinormal Mode Ringing, Phys. Rev. D 73, 064027 (2006). PRVDAQ 1550-7998 10.1103/PhysRevD.73.064027
T. W. Baumgarte, S. L. Shapiro, and M. Shibata, On the Maximum Mass of Differentially Rotating Neutron Stars, Astrophys. J. Lett. 528, L29 (2000). AJLEEY 2041-8213 10.1086/312425
B. Giacomazzo and R. Perna, Formation of Stable Magnetars from Binary Neutron Star Mergers, Astrophys. J. 771, L26 (2013). ASJOAB 1538-4357 10.1088/2041-8205/771/2/L26
S. L. Shapiro, Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping, Astrophys. J. 544, 397 (2000). ASJOAB 1538-4357 10.1086/317209
K. Hotokezaka, K. Kiuchi, K. Kyutoku, T. Muranushi, Y.-i. Sekiguchi, M. Shibata, and K. Taniguchi, Remnant Massive Neutron Stars of Binary Neutron Star Mergers: Evolution Process and Gravitational Waveform, Phys. Rev. D 88, 044026 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.044026
V. Ravi and P. D. Lasky, The Birth of Black Holes: Neutron Star Collapse Times, Gamma-Ray Bursts and Fast Radio Bursts, Mon. Not. R. Astron. Soc. 441, 2433 (2014). MNRAA4 0035-8711 10.1093/mnras/stu720
K. Chatziioannou, J. A. Clark, A. Bauswein, M. Millhouse, T. B. Littenberg, and N. Cornish, Inferring the Post-merger Gravitational Wave Emission from Binary Neutron Star Coalescences, Phys. Rev. D 96, 124035 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.96.124035
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Tests of General Relativity with GW150914, Phys. Rev. Lett. 116, 221101 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.221101
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118, 221101 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA, Living Rev. Relativity 19, 1 (2016); 1433-8351 10.1007/lrr-2016-1
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration) Living Rev. Relativity 21, 3 (2018). 1433-8351 10.1007/s41114-018-0012-9
J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, and D. Sigg, Prospects for Doubling the Range of Advanced LIGO, Phys. Rev. D 91, 062005 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.062005
F. Zappa, S. Bernuzzi, D. Radice, A. Perego, and T. Dietrich, Gravitational-Wave Luminosity of Binary Neutron Stars Mergers, Phys. Rev. Lett. 120, 111101 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.120.111101
A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Equation of State of Nucleon Matter and Neutron Star Structure, Phys. Rev. C 58, 1804 (1998). PRVCAN 0556-2813 10.1103/PhysRevC.58.1804
R. Ciolfi, W. Kastaun, B. Giacomazzo, A. Endrizzi, D. M. Siegel, and R. Perna, General Relativistic Magnetohydrodynamic Simulations of Binary Neutron Star Mergers Forming a Long-lived Neutron Star, Phys. Rev. D 95, 063016 (2017). PRVDAQ 2470-0010 10.1103/PhysRevD.95.063016
N. K. Glendenning and S. A. Moszkowski, Reconciliation of Neutron Star Masses and Binding of the Lambda in Hypernuclei, Phys. Rev. Lett. 67, 2414 (1991). PRLTAO 0031-9007 10.1103/PhysRevLett.67.2414
N. K. Glendenning, Neutron Stars Are Giant Hypernuclei?, Astrophys. J. 293, 470 (1985). ASJOAB 1538-4357 10.1086/163253
K. Takami, L. Rezzolla, and L. Baiotti, Spectral Properties of the Post-merger Gravitational-Wave Signal from Binary Neutron Stars, Phys. Rev. D 91, 064001 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.064001
F. Douchin and P. Haensel, A Unified Equation of State of Dense Matter and Neutron Star Structure, Astron. Astrophys. 380, 151 (2001). AAEJAF 0004-6361 10.1051/0004-6361:20011402
A. W. Steiner, M. Hempel, and T. Fischer, Core-Collapse Supernova Equations of State Based on Neutron Star Observations, Astrophys. J. 774, 17 (2013). ASJOAB 1538-4357 10.1088/0004-637X/774/1/17
A. Bauswein, T. W. Baumgarte, and H.-T. Janka, Prompt Merger Collapse and the Maximum Mass of Neutron Stars, Phys. Rev. Lett. 111, 131101 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.131101
M. Hempel and J. Schaffner-Bielich, Statistical Model for a Complete Supernova Equation of State, Nucl. Phys. A837, 210 (2010). NUPABL 0375-9474 10.1016/j.nuclphysa.2010.02.010
S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter, Composition and Thermodynamics of Nuclear Matter with Light Clusters, Phys. Rev. C 81, 015803 (2010). PRVCAN 0556-2813 10.1103/PhysRevC.81.015803
https://dcc.ligo.org/LIGO-P1800061/public.
LIGO Open Science Center (LOSC), https://doi.org/10.7935/K5B8566F.
M. Favata, Systematic Parameter Errors in Inspiraling Neutron Star Binaries, Phys. Rev. Lett. 112, 101101 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.101101
K. Yagi and N. Yunes, Love Number Can Be Hard to Measure, Phys. Rev. D 89, 021303 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.021303
B. D. Lackey and L. Wade, Reconstructing the Neutron-Star Equation of State with Gravitational-Wave Detectors from a Realistic Population of Inspiralling Binary Neutron Stars, Phys. Rev. D 91, 043002 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.043002
R. Dudi, F. Pannarale, T. Dietrich, M. Hannam, S. Bernuzzi, F. Ohme, and B. Bruegmann, Relevance of Tidal Effects and Post-merger Dynamics for Binary Neutron Star Parameter Estimation, Phys. Rev. D 98, 084061 (2018). PRVDAQ 2470-0010 10.1103/PhysRevD.98.084061
J. S. Read, C. Markakis, M. Shibata, K. Uryu, J. D. E. Creighton, and J. L. Friedman, Measuring the Neutron Star Equation of State with Gravitational Wave Observations, Phys. Rev. D 79, 124033 (2009). PRVDAQ 1550-7998 10.1103/PhysRevD.79.124033
M. Vallisneri, Use and Abuse of the Fisher Information Matrix in the Assessment of Gravitational-Wave Parameter-Estimation Prospects, Phys. Rev. D 77, 042001 (2008). PRVDAQ 1550-7998 10.1103/PhysRevD.77.042001
C. L. Rodriguez, B. Farr, V. Raymond, W. M. Farr, T. B. Littenberg, D. Fazi, and V. Kalogera, Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network, Astrophys. J. 784, 119 (2014). ASJOAB 1538-4357 10.1088/0004-637X/784/2/119
S. M. Gaebel and J. Veitch, How Would GW150914 Look with Future Gravitational Wave Detector Networks?, Classical Quantum Gravity 34, 174003 (2017). CQGRDG 0264-9381 10.1088/1361-6382/aa82d9
S. Vitale and H.-Y. Chen, Measuring the Hubble Constant with Neutron Star Black Hole Mergers, Phys. Rev. Lett. 121, 021303 (2018). PRLTAO 0031-9007 10.1103/PhysRevLett.121.021303