Aab A et al (2016) Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory. Phys Rev D 94:122007. 10.1103/PhysRevD.94.122007. arXiv:1608.07378
Aasi J et al (2012) The characterization of Virgo data and its impact on gravitational-wave searches. Class Quantum Grav 29:155002. 10.1088/0264-9381/29/15/155002. arXiv:1203.5613
Aasi J et al (2013a) Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat Photon 7:613–619. 10.1038/nphoton.2013.177. arXiv:1310.0383
Aasi J et al (2013b) Open call for partnership for the EM identification and follow-up of GW candidate events. Technical report LIGO M1300550-v3 / VIR-0494E-13, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-M1300550-v8/public
Aasi J et al (2013c) Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Phys Rev D 88:062001. 10.1103/PhysRevD.88.062001. arXiv:1304.1775
Aasi J et al (2014a) First searches for optical counterparts to gravitational-wave candidate events. Astrophys J Suppl 211:7. 10.1088/0067-0049/211/1/7. arXiv:1310.2314
Aasi J et al (2014b) Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors. Phys Rev D 89:122004. 10.1103/PhysRevD.89.122004. arXiv:1405.1053
Aasi J et al (2014c) Search for gravitational waves associated with γ -ray bursts detected by the Interplanetary Network. Phys Rev Lett 113:011102. 10.1103/PhysRevLett.113.011102. arXiv:1403.6639
Aasi J et al (2015a) Advanced LIGO. Class Quantum Grav 32:074001. 10.1088/0264-9381/32/7/074001. arXiv:1411.4547
Aasi J et al (2015b) Characterization of the LIGO detectors during their sixth science run. Class Quantum Grav 32:115012. 10.1088/0264-9381/32/11/115012. arXiv:1410.7764
Aasi J et al (2015c) Instrument science white paper. Technical report LIGO-T1400316-v4, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1400316/public
Aasi J et al (2016) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Rev Relativ 19:1. 10.1007/lrr-2016-1. arXiv:1304.0670v3
Abadie J et al (2010a) All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys Rev D 81:102001. 10.1103/PhysRevD.85.089905. arXiv:1002.1036
Abadie J et al (2010b) Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quantum Grav 27:173001. 10.1088/0264-9381/27/17/173001. arXiv:1003.2480
Abadie J et al (2011) A gravitational wave observatory operating beyond the quantum shot-noise limit: squeezed light in application. Nat Phys 7:962–965. 10.1038/nphys2083. arXiv:1109.2295
Abadie J et al (2012a) All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys Rev D 85:122007. 10.1103/PhysRevD.85.122007. arXiv:1202.2788
Abadie J et al (2012b) First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astron Astrophys 541:A155. 10.1051/0004-6361/201218860. arXiv:1112.6005
Abadie J et al (2012c) Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts. Astron Astrophys 539:A124. 10.1051/0004-6361/201118219. arXiv:1109.3498
Abadie J et al (2012d) LSC and Virgo policy on releasing gravitational wave triggers to the public in the advanced detectors era. Technical report LIGO M1200055-v2 / VIR-0173A-12, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-M1200055-v2/public
Abadie J et al (2012e) Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3. Astrophys J 760:12. 10.1088/0004-637X/760/1/12. arXiv:1205.2216
Abadie J et al (2012f) Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3. Phys Rev D 85:082002. 10.1103/PhysRevD.85.082002. arXiv:1111.7314
Abadie J et al (2012g) Sensitivity achieved by the LIGO and Virgo gravitational wave detectors during LIGO’s sixth and Virgo’s second and third science runs. ArXiv e-prints arXiv:1203.2674
Abbott BP et al (2016a) All-sky search for long-duration gravitational wave transients with initial LIGO. Phys Rev D 93:042005. 10.1103/PhysRevD.93.042005. arXiv:1511.04398
Abbott BP et al (2016b) Astrophysical implications of the binary black-hole merger GW150914. Astrophys J Lett 818:L22. 10.3847/2041-8205/818/2/L22. arXiv:1602.03846
Abbott BP et al (2016c) Binary black hole mergers in the first Advanced LIGO observing run. Phys Rev X 6:041015. 10.1103/PhysRevX.6.041015. arXiv:1606.04856
Abbott BP et al (2016d) Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Class Quantum Grav 33:134001. 10.1088/0264-9381/33/13/134001. arXiv:1602.03844
Abbott BP et al (2016e) GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Phys Rev D 93:122003. 10.1103/PhysRevD.93.122003. arXiv:1602.03839
Abbott BP et al (2016f) GW150914: The Advanced LIGO detectors in the era of first discoveries. Phys Rev Lett 116:131103. 10.1103/PhysRevLett.116.131103. arXiv:1602.03838
Abbott BP et al (2016g) GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116:241103. 10.1103/PhysRevLett.116.241103. arXiv:1606.04855
Abbott BP et al (2016h) Improved analysis of GW150914 using a fully spin-precessing waveform model. Phys Rev X 6:041014. 10.1103/PhysRevX.6.041014. arXiv:1606.01210
Abbott BP et al (2016i) Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Lett 826:L13. 10.3847/2041-8205/826/1/L13. arXiv:1602.08492
Abbott BP et al (2016j) The LSC–Virgo white paper on gravitational wave searches and astrophysics (2016–2017 edition). Technical report LIGO-T1600115-v6, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1600115/public
Abbott BP et al (2016k) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102. 10.1103/PhysRevLett.116.061102. arXiv:1602.03837
Abbott BP et al (2016l) Observing gravitational-wave transient GW150914 with minimal assumptions. Phys Rev D 93:122004. 10.1103/PhysRevD.93.122004. arXiv:1602.03843
Abbott BP et al (2016m) Properties of the binary black hole merger GW150914. Phys Rev Lett 116:241102. 10.1103/PhysRevLett.116.241102. arXiv:1602.03840
Abbott BP et al (2016n) Supplement: localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Suppl 225:8. 10.3847/0067-0049/225/1/8. arXiv:1604.07864
Abbott BP et al (2016o) Supplement: the rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Suppl 227:14. 10.3847/0067-0049/227/2/14. arXiv:1606.03939
Abbott BP et al (2016p) The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Lett 833:1. 10.3847/2041-8205/833/1/L1. arXiv:1602.03842
Abbott BP et al (2016q) Upper limits on the rates of binary neutron star and neutron-star-black-hole mergers from Advanced LIGO’s first observing run. Astrophys J Lett 832:L21. 10.3847/2041-8205/832/2/L21. arXiv:1607.07456
Abbott BP et al (2017a) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551(7678):85–88. 10.1038/nature24471. arXiv:1710.05835
Abbott BP et al (2017b) All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Phys Rev D 95:042003. 10.1103/PhysRevD.95.042003. arXiv:1611.02972
Abbott BP et al (2017c) Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Phys Rev D 95:062003. 10.1103/PhysRevD.95.062003. arXiv:1602.03845
Abbott BP et al (2017d) Exploring the sensitivity of next generation gravitational wave detectors. Class Quantum Grav 34:044001. 10.1088/1361-6382/aa51f4. arXiv:1607.08697
Abbott BP et al (2017e) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J Lett 848:L13. 10.3847/2041-8213/aa920c. arXiv:1710.05834
Abbott BP et al (2017f) GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys Rev Lett 118:221101. 10.1103/PhysRevLett.118.221101. arXiv:1706.01812
Abbott BP et al (2017g) GW170608: Observation of a 19 solar-mass binary black hole coalescence. Astrophys J Lett 851:35. 10.3847/2041-8213/aa9f0c. arXiv:1711.05578
Abbott BP et al (2017h) GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett 119:141101. 10.1103/PhysRevLett.119.141101. arXiv:1709.09660
Abbott BP et al (2017i) GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119:161101. 10.1103/PhysRevLett.119.161101. arXiv:1710.05832
Abbott BP et al (2017j) The LSC–Virgo white paper on gravitational wave searches and astrophysics (2017–2018 edition). Technical report LIGO-T1700214-v4, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1700214/public
Abbott BP et al (2017k) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848:L12. 10.3847/2041-8213/aa91c9. arXiv:1710.05833
Abbott BP et al (2017l) Search for gravitational waves associated with gamma-ray bursts during the first Advanced LIGO observing run and implications for the origin of GRB 150906B. Astrophys J 841:89. 10.3847/1538-4357/aa6c47. arXiv:1611.07947
Abbott BP et al (2017m) Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Phys Rev D 96:022001. 10.1103/PhysRevD.96.022001. arXiv:1704.04628
Abbott BP et al (2018) Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run. Class Quant Grav 35(6):065010. 10.1088/1361-6382/aaaafa. arXiv:1710.02185
Abdalla H et al (2017) TeV gamma-ray observations of the binary neutron star merger GW170817 with H.E.S.S. Astrophys J Lett 850:L22. 10.3847/2041-8213/aa97d2. arXiv:1710.05862
Abe K et al (2016) Search for Neutrinos in Super–Kamiokande associated with Gravitational Wave Events GW150914 and GW151226. Astrophys J Lett 830:L11. 10.3847/2041-8205/830/1/L11. arXiv:1608.08745
Accadia T et al (2012) Advanced Virgo technical design report. Technical report VIR-0128A-12, Virgo, Cascina. https://tds.ego-gw.it/ql/?c=8940
Acernese F et al (2009) Advanced Virgo baseline design. Technical report VIR-027A-09, Virgo, Cascina. https://tds.ego-gw.it/ql/?c=6589
Acernese F et al (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Grav 32:024001. 10.1088/0264-9381/32/2/024001. arXiv:1408.3978
Ackermann M et al (2016) Fermi-LAT observations of the LIGO event GW150914. Astrophys J Lett 823:L2. 10.3847/2041-8205/823/1/L2. arXiv:1602.04488
Adams TS, Meacher D, Clark J, Sutton PJ, Jones G, Minot A (2013) Gravitational-wave detection using multivariate analysis. Phys Rev D 88:062006. 10.1103/PhysRevD.88.062006. arXiv:1305.5714
Ade PAR et al (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13. 10.1051/0004-6361/201525830. arXiv:1502.01589
Adrian-Martinez S et al (2016) High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Phys Rev D 93:122010. 10.1103/PhysRevD.93.122010. arXiv:1602.05411
Adriani O et al (2016) CALET Upper Limits on X-ray and Gamma-ray Counterparts of GW151226. Astrophys J Lett 829:L20. 10.3847/2041-8205/829/1/L20. arXiv:1607.00233
Affeldt C et al (2014) Advanced techniques in GEO 600. Class Quantum Grav 31:224002. 10.1088/0264-9381/31/22/224002
Agostini M et al (2017) A search for low-energy neutrinos correlated with gravitational wave events GW150914, GW151226 and GW170104 with the Borexino detector. Astrophys J 850:21. 10.3847/1538-4357/aa9521. arXiv:1706.10176
Ajith P, Fotopoulos N, Privitera S, Neunzert A, Weinstein AJ (2014) Effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins. Phys Rev D 89:084041. 10.1103/PhysRevD.89.084041. arXiv:1210.6666
Akutsu T et al (2018) Construction of KAGRA: an underground gravitational wave observatory. PTEP 2018(1):013F01. https://doi.org/10.1093/ptep/ptx180. arXiv:1712.00148
Albert A et al (2017a) All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the ANTARES neutrino telescope. Eur Phys J C 77:911. 10.1140/epjc/s10052-017-5451-z. arXiv:1710.03020
Albert A et al (2017b) Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys J Lett 850:L35. 10.3847/2041-8213/aa9aed. arXiv:1710.05839
Albert A et al (2017c) Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Phys Rev D 96:022005. 10.1103/PhysRevD.96.022005. arXiv:1703.06298
Alexander KD et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys J Lett 848:L21. 10.3847/2041-8213/aa905d. arXiv:1710.05457
Allen B (2005) A χ2 time-frequency discriminator for gravitational wave detection. Phys Rev D 71:062001. 10.1103/PhysRevD.71.062001. arXiv:gr-qc/0405045
Amaro-Seoane P et al (2012) Low-frequency gravitational-wave science with eLISA/NGO. Class Quantum Grav 29:124016. 10.1088/0264-9381/29/12/124016. arXiv:1202.0839
Amaro-Seoane P et al (2013) eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime. GW Notes 6:4–110. arXiv:1201.3621
Annis J et al (2016) A dark energy camera search for missing supergiants in the LMC after the Advanced LIGO gravitational-wave event GW150914. Astrophys J Lett 823:L34. 10.3847/2041-8205/823/2/L34. arXiv:1602.04199
Arai S, Nishizawa A (2017) Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory. ArXiv e-prints arXiv:1711.03776
Arcavi I et al (2017a) Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551:64. 10.1038/nature24291. arXiv:1710.05843
Arcavi I et al (2017b) Optical follow-up of gravitational-wave events with Las Cumbres observatory. Astrophys J Lett 848:L33. 10.3847/2041-8213/aa910f. arXiv:1710.05842
Aso Y et al (2013) Interferometer design of the KAGRA gravitational wave detector. Phys Rev D 88:043007. 10.1103/PhysRevD.88.043007. arXiv:1306.6747
Babak S, Balasubramanian R, Churches D, Cokelaer T, Sathyaprakash BS (2006) A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models. Class Quantum Grav 23:5477–5504. 10.1088/0264-9381/23/18/002. arXiv:gr-qc/0604037
Babak S et al (2013) Searching for gravitational waves from binary coalescence. Phys Rev D 87:024033. 10.1103/PhysRevD.87.024033. arXiv:1208.3491
Bagoly Z et al (2016) Searching for electromagnetic counterpart of LIGO gravitational waves in the Fermi GBM data with ADWO. Astron Astrophys 593:L10. 10.1051/0004-6361/201628569. arXiv:1603.06611
Baker T, Bellini E, Ferreira PG, Lagos M, Noller J, Sawicki I (2017) Strong constraints on cosmological gravity from GW170817 and GRB 170817A. Phys Rev Lett 119:251301. 10.1103/PhysRevLett.119.251301. arXiv:1710.06394
Barausse E, Yunes N, Chamberlain K (2016) Theory-agnostic constraints on black-hole dipole radiation with multiband gravitational-wave astrophysics. Phys Rev Lett 116:241104. 10.1103/PhysRevLett.116.241104. arXiv:1603.04075
Barsotti L, Fritschel P (2012) Early aLIGO configurations: example scenarios toward design sensitivity. Technical report LIGO-T1200307-v4, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1200307/public
Bartos I, Kocsis B, Haiman Z, Márka S (2017) Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys J 835:165. 10.3847/1538-4357/835/2/165. arXiv:1602.03831
Bécsy B, Raffai P, Cornish NJ, Essick R, Kanner J, Katsavounidis E, Littenberg TB, Millhouse M, Vitale S (2016) Parameter estimation for gravitational-wave bursts with the BayesWave pipeline. Astrophys J 839:1. 10.3847/1538-4357/aa63ef. arXiv:1612.02003
Belczynski K et al (2017) The origin of the first neutron star–neutron star merger. ArXiv e-prints arXiv:1712.00632
Berry CPL et al (2015) Parameter estimation for binary neutron-star coalescences with realistic noise during the Advanced LIGO era. Astrophys J 804:114. 10.1088/0004-637X/804/2/114. arXiv:1411.6934
Bhalerao V et al (2017) A tale of two transients: GW170104 and GRB170105A. Astrophys J 845:152. 10.3847/1538-4357/aa81d2. arXiv:1706.00024
Blanchet L (2014) Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev Relativ 17:2. 10.12942/lrr-2014-2. arXiv:1310.1528
Boran S, Desai S, Kahya EO, Woodard RP (2018) GW170817 falsifies dark matter emulators. Phys Rev D 97(4):041501. 10.1103/PhysRevD.97.041501. arXiv:1710.06168
Breivik K et al (2016) Distinguishing between formation channels for binary black holes with LISA. Astrophys J Lett 830:L18. 10.3847/2041-8205/830/1/L18. arXiv:1606.09558
Brocato E et al (2017) GRAWITA: VLT Survey Telescope observations of the gravitational wave sources GW150914 and GW151226. ArXiv e-prints arXiv:1710.05915
Brown DA, Harry I, Lundgren A, Nitz AH (2012) Detecting binary neutron star systems with spin in advanced gravitational-wave detectors. Phys Rev D 86:084017. 10.1103/PhysRevD.86.084017. arXiv:1207.6406
Brown DD, Miao H, Collins C, Mow-Lowry C, Töyra D, Freise A (2017) Broadband sensitivity enhancement of detuned dual-recycled Michelson interferometers with EPR entanglement. Phys Rev D 96:062003. 10.1103/PhysRevD.96.062003. arXiv:1704.07173
Buonanno A, Iyer B, Ochsner E, Pan Y, Sathyaprakash BS (2009) Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys Rev D 80:084043. 10.1103/PhysRevD.80.084043. arXiv:0907.0700
Bustillo JC, Laguna P, Shoemaker D (2017) Detectability of gravitational waves from binary black holes: Impact of precession and higher modes. Phys Rev D 95:104038. 10.1103/PhysRevD.95.104038. arXiv:1612.02340
Canizares P, Field SE, Gair JR, Tiglio M (2013) Gravitational wave parameter estimation with compressed likelihood evaluations. Phys Rev D 87:124005. 10.1103/PhysRevD.87.124005. arXiv:1304.0462
Canizares P, Field SE, Gair J, Raymond V, Smith R, Tiglio M (2015) Accelerated gravitational-wave parameter estimation with reduced order modeling. Phys Rev Lett 114:071104. 10.1103/PhysRevLett.114.071104. arXiv:1404.6284
Cannon K, Cariou R, Chapman A, Crispin-Ortuzar M, Fotopoulos N et al (2012) Toward early-warning detection of gravitational waves from compact binary coalescence. Astrophys J 748:136. 10.1088/0004-637X/748/2/136. arXiv:1107.2665
Cannon K, Hanna C, Peoples J (2015) Likelihood-ratio ranking statistic for compact binary coalescence candidates with rate estimation. ArXiv e-prints arXiv:1504.04632
Capano C, Harry I, Privitera S, Buonanno A (2016) Implementing a search for gravitational waves from binary black holes with nonprecessing spin. Phys Rev D 93:124007. 10.1103/PhysRevD.93.124007. arXiv:1602.03509
Capano C, Dent T, Hanna C, Hendry M, Hu YM, Messenger C, Veitch J (2017) Systematic errors in estimation of gravitational-wave candidate significance. Phys Rev D 96:082002. 10.1103/PhysRevD.96.082002. arXiv:1708.06710
Centrella J et al (2010) Black-hole binaries, gravitational waves, and numerical relativity. Rev Mod Phys 82:3069. 10.1103/RevModPhys.82.3069. arXiv:1010.5260
Chan ML, Hu YM, Messenger C, Hendry M, Heng IS (2017) Maximising the detection probability of kilonovae associated with gravitational wave observations. Astrophys J 834:84. 10.3847/1538-4357/834/1/84. arXiv:1506.04035
Chassande-Mottin E, Miele M, Mohapatra S, Cadonati L (2010) Detection of gravitational-wave bursts with chirplet-like template families. Class Quantum Grav 27:194017. 10.1088/0264-9381/27/19/194017. arXiv:1005.2876
Chatterji S, Lazzarini A, Stein L, Sutton P, Searle A, Tinto M (2006) Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise. Phys Rev D 74:082005. 10.1103/PhysRevD.74.082005. arXiv:gr-qc/0605002
Chen HY, Holz DE (2015) Facilitating follow-up of LIGO–Virgo events using rapid sky localization. ArXiv e-prints arXiv:1509.00055
Chen HY, Holz DE, Miller J, Evans M, Vitale S, Creighton J (2017) Distance measures in gravitational-wave astrophysics and cosmology. ArXiv e-prints arXiv:1709.08079
Chornock R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-south. Astrophys J Lett 848:L19. 10.3847/2041-8213/aa905c. arXiv:1710.05454
Cokelaer T (2007) Gravitational waves from inspiralling compact binaries: hexagonal template placement and its efficiency in detecting physical signals. Phys Rev D 76:102004. 10.1103/PhysRevD.76.102004. arXiv:0706.4437
Connaughton V et al (2016) Fermi GBM observations of LIGO gravitational wave event GW150914. Astrophys J Lett 826:L6. 10.3847/2041-8205/826/1/L6. arXiv:1602.03920
Copperwheat CM et al (2016) Liverpool Telescope follow-up of candidate electromagnetic counterparts during the first run of Advanced LIGO. Mon Not R Astron Soc 462:3528. 10.1093/mnras/stw1849. arXiv:1606.04574
Cornish NJ, Littenberg TB (2015) BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches. Class Quantum Grav 32:135012. 10.1088/0264-9381/32/13/135012. arXiv:1410.3835
Corsi A et al (2017) iPTF17cw: An engine-driven supernova candidate discovered independent of a gamma-ray trigger. Astrophys J 847:54. 10.3847/1538-4357/aa85e5. arXiv:1706.00045
Coulter DA et al (2017) Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358(6370):1556–1558. 10.1126/science.aap9811. arXiv:1710.05452
Cowperthwaite PS et al (2016) A DECam search for an optical counterpart to the LIGO gravitational wave event GW151226. Astrophys J Lett 826:L29. 10.3847/2041-8205/826/2/L29. arXiv:1606.04538
Creminelli P, Vernizzi F (2017) Dark energy after GW170817 and GRB170817A. Phys Rev Lett 119:251302. 10.1103/PhysRevLett.119.251302. arXiv:1710.05877
Cutler C, Flanagan EE (1994) Gravitational waves from merging compact binaries: how accurately can one extract the binary’s parameters from the inspiral wave form? Phys Rev D 49:2658–2697. 10.1103/PhysRevD.49.2658. arXiv:gr-qc/9402014
Dai L, McKinney JC, Miller MC (2017) Energetic constraints on electromagnetic signals from double black hole mergers. Mon Not R Astron Soc Lett 470:L92. 10.1093/mnrasl/slx086. arXiv:1611.00764
Dal Canton T, Harry IW (2017) Designing a template bank to observe compact binary coalescences in Advanced LIGO’s second observing run. ArXiv e-prints arXiv:1705.01845
Dal Canton T, Lundgren AP, Nielsen AB (2015) Impact of precession on aligned-spin searches for neutron-star-black-hole binaries. Phys Rev D 91:062010. 10.1103/PhysRevD.91.062010. arXiv:1411.6815
Dal Canton T et al (2014) Implementing a search for aligned-spin neutron star-black hole systems with advanced ground based gravitational wave detectors. Phys Rev D 90:082004. 10.1103/PhysRevD.90.082004. arXiv:1405.6731
D’Avanzo P et al (2018) Evidence for a decreasing X-ray afterglow emission of GW170817A and GRB 170817A in XMM-Newton. ArXiv e-prints arXiv:1801.06164
Daw EJ, Giaime JA, Lormand D, Lubinski M, Zweizig J (2004) Long term study of the seismic environment at LIGO. Class Quantum Grav 21:2255–2273. 10.1088/0264-9381/21/9/003. arXiv:gr-qc/0403046
de Mink SE, Belczynski K (2015) Merger rates of double neutron stars and stellar origin black holes: the impact of initial conditions on binary evolution predictions. Astrophys J 814:58. 10.1088/0004-637X/814/1/58. arXiv:1506.03573
de Mink SE, King A (2017) Electromagnetic signals following stellar-mass black hole mergers. Astrophys J Lett 839:L7. 10.3847/2041-8213/aa67f3. arXiv:1703.07794
Díaz MC et al (2016) GW150914: First search for the electromagnetic counterpart of a gravitational-wave event by the TOROS collaboration. Astrophys J Lett 828:L16. 10.3847/2041-8205/828/2/L16. arXiv:1607.07850
Dimmelmeier H, Ott C, Marek A, Janka HT (2008) The gravitational wave burst signal from core collapse of rotating stars. Phys Rev D 78:064056. 10.1103/PhysRevD.78.064056. arXiv:0806.4953
Dominik M, Berti E, O’Shaughnessy R, Mandel I, Belczynski K, Fryer C, Holz DE, Bulik T, Pannarale F (2015) Double compact objects III: gravitational wave detection rates. Astrophys J 806:263. 10.1088/0004-637X/806/2/263. arXiv:1405.7016
Dooley KL et al (2016) GEO 600 and the GEO-HF upgrade program: successes and challenges. Class Quantum Grav 33:075009. 10.1088/0264-9381/33/7/075009. arXiv:1510.00317
Effler A, Schofield RMS, Frolov VV, González G, Kawabe K, Smith JR, Birch J, McCarthy R (2015) Environmental Influences on the LIGO gravitational wave detectors during the 6th science run. Class Quantum Grav 32:035017. 10.1088/0264-9381/32/3/035017. arXiv:1409.5160
Eldridge JJ, Stanway ER, Xiao L, McClelland LAS, Taylor G, Ng M, Greis SML, Bray JC (2017) Binary population and spectral synthesis version 2.1: construction, observational verification, and new results. Publ Astron Soc Austral 34:e058. 10.1017/pasa.2017.51. arXiv:1710.02154
Essick R, Vitale S, Katsavounidis E, Vedovato G, Klimenko S (2015) Localization of short duration gravitational-wave transients with the early Advanced LIGO and Virgo detectors. Astrophys J 800:81. 10.1088/0004-637X/800/2/81. arXiv:1409.2435
Evans P et al (2012) Swift follow-up observations of candidate gravitational-wave transient events. Astrophys J Suppl 203:28. 10.1088/0067-0049/203/2/28. arXiv:1205.1124
Evans PA, Osborne JP, Kennea JA, Campana S, O’Brien PT, Tanvir NR, Racusin JL, Burrows DN, Cenko SB, Gehrels N (2016a) Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015–16. Mon Not R Astron Soc 455:1522–1537. 10.1093/mnras/stv2213. arXiv:1506.01624
Evans PA et al (2016b) Swift follow-up of gravitational wave triggers: results from the first aLIGO run and optimisation for the future. Mon Not R Astron Soc 462:1591–1602. 10.1093/mnras/stw1746. arXiv:1606.05001
Evans PA et al (2016c) Swift follow-up of the gravitational wave source GW150914. Mon Not R Astron Soc Lett 460:L40. 10.1093/mnrasl/slw065. arXiv:1602.03868
Ezquiaga JM, Zumalacárregui M (2017) Dark Energy After GW170817: dead ends and the road ahead. Phys Rev Lett 119:251304. 10.1103/PhysRevLett.119.251304. arXiv:1710.05901
Fairhurst S (2009) Triangulation of gravitational wave sources with a network of detectors. New J Phys 11:123006. https://doi.org/10.1088/1367-2630/11/12/123006, [Erratum: New J. Phys. 13:069602(2011)]. arXiv:0908.2356
Fairhurst S (2011) Source localization with an advanced gravitational wave detector network. Class Quantum Grav 28:105021. 10.1088/0264-9381/28/10/105021. arXiv:1010.6192
Fairhurst S (2017) Localization of transient gravitational wave sources: beyond triangulation. ArXiv e-prints arXiv:1712.04724
Fan X, Messenger C, Heng IS (2014) A Bayesian approach to multi-messenger astronomy: Identification of gravitational-wave host galaxies. Astrophys J 795:43. 10.1088/0004-637X/795/1/43. arXiv:1406.1544
Farr B et al (2016) Parameter estimation on gravitational waves from neutron-star binaries with spinning components. Astrophys J 825:116. 10.3847/0004-637X/825/2/116. arXiv:1508.05336
Finn L, Chernoff D (1993) Observing binary inspiral in gravitational radiation: one interferometer. Phys Rev D 47:2198–2219. 10.1103/PhysRevD.47.2198. arXiv:gr-qc/9301003
Gaebel SM, Veitch J (2017) How would GW150914 look with future gravitational wave detector networks? Class Quant Grav 34:174003. 10.1088/1361-6382/aa82d9. arXiv:1703.08988
Gando A et al (2016) Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND. Astrophys J Lett 829:L34. 10.3847/2041-8205/829/2/L34. arXiv:1606.07155
Gehrels N, Cannizzo JK, Kanner J, Kasliwal MM, Nissanke S, Singer LP (2016) Galaxy strategy for LIGO-Virgo gravitational wave counterpart searches. Astrophys J 820:136. 10.3847/0004-637X/820/2/136. arXiv:1508.03608
Ghosh S, Bloemen S, Nelemans G, Groot PJ, Price LR (2016) Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view. Astron Astrophys 592:A82. 10.1051/0004-6361/201527712. arXiv:1511.02673
Goldstein A et al (2017a) An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys J Lett 848:L14. 10.3847/2041-8213/aa8f41. arXiv:1710.05446
Goldstein A et al (2017b) Fermi observations of the LIGO event GW170104. Astrophys J Lett 846:L5. 10.3847/2041-8213/aa8319. arXiv:1706.00199
Grote H et al (2013) First long-term application of squeezed states of light in a gravitational-wave observatory. Phys Rev Lett 110:181101. 10.1103/PhysRevLett.110.181101. arXiv:1302.2188
Grover K, Fairhurst S, Farr BF, Mandel I, Rodriguez C, Sidery T, Vecchio A (2014) Comparison of gravitational wave detector network sky localization approximations. Phys Rev D 89:042004. 10.1103/PhysRevD.89.042004. arXiv:1310.7454
Haggard D, Nynka M, Ruan JJ, Kalogera V, Bradley Cenko S, Evans P, Kennea JA (2017) A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys J Lett 848:L25. 10.3847/2041-8213/aa8ede. arXiv:1710.05852
Hallinan G et al (2017) A radio counterpart to a neutron star merger. Science 358(6370):1579–1583. 10.1126/science.aap9855. arXiv:1710.05435
Hanna C, Mandel I, Vousden W (2014) Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes. Astrophys J 784:8. 10.1088/0004-637X/784/1/8. arXiv:1312.2077
Harry GM (2010) Advanced LIGO: the next generation of gravitational wave detectors. Class Quantum Grav 27:084006. 10.1088/0264-9381/27/8/084006
Harry I, Privitera S, Bohé A, Buonanno A (2016) Searching for gravitational waves from compact binaries with precessing spins. Phys Rev D 94:024012. 10.1103/PhysRevD.94.024012. arXiv:1603.02444
Harry IW, Allen B, Sathyaprakash BS (2009) A stochastic template placement algorithm for gravitational wave data analysis. Phys Rev D 80:104014. 10.1103/PhysRevD.80.104014. arXiv:0908.2090
Harry IW et al (2014) Investigating the effect of precession on searches for neutron-star-black-hole binaries with Advanced LIGO. Phys Rev D 89:024010. 10.1103/PhysRevD.89.024010. arXiv:1307.3562
Hild S et al (2011) Sensitivity studies for third-generation gravitational wave observatories. Class Quantum Grav 28:094013. 10.1088/0264-9381/28/9/094013. arXiv:1012.0908
Hild S et al (2012) LIGO 3 Strawman Design, Team Red. Tech. Rep. LIGO-T1200046-v1, LIGO, Pasadena, CA. https://dcc.ligo.org/LIGO-T1200046/public
Hurley K et al (2016) The interplanetary network response to LIGO GW150914. Astrophys J Lett 829:L12. 10.3847/2041-8205/829/1/L12
Iyer B et al (2011) LIGO-India. Technical report M1100296-v2, IndIGO, India. https://dcc.ligo.org/LIGO-M1100296/public
Janiuk A, Bejger M, Charzyński S, Sukova P (2017) On the possible gamma-ray burst-gravitational wave association in GW150914. New Astron 51:7–14. 10.1016/j.newast.2016.08.002. arXiv:1604.07132
Jaranowski P, Królak A (2012) Gravitational-wave data analysis. Formalism and sample applications: the Gaussian case. Living Rev Relativ 15:4. 10.12942/lrr-2012-4. arXiv:0711.1115
Kanner JB et al (2016) Leveraging waveform complexity for confident detection of gravitational waves. Phys Rev D 93:022002. 10.1103/PhysRevD.93.022002. arXiv:1509.06423
Kasliwal MM, Nissanke S (2014) On discovering electromagnetic emission from neutron star mergers: the early years of two gravitational wave detectors. Astrophys J Lett 789:L5. 10.1088/2041-8205/789/1/L5. arXiv:1309.1554
Kasliwal MM et al (2016) iPTF Search for an Optical Counterpart to Gravitational Wave Trigger GW150914. Astrophys J Lett 824:L24. 10.3847/2041-8205/824/2/L24. arXiv:1602.08764
Kasliwal MM et al (2017) Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science https://doi.org/10.1126/science.aap9455. arXiv:1710.05436
Kawai N, Negoro H, Serino M, Mihara T, Tanaka K, Masumitsu T, Nakahira S (2017) X-ray upper limits of GW150914 with MAXI. Publ Astron Soc Jpn 69:84. 10.1093/pasj/psx085. arXiv:1708.01342
Khan S et al (2016) Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era. Phys Rev D 93:044007. 10.1103/PhysRevD.93.044007. arXiv:1508.07253
Kim C, Perera BBP, McLaughlin MA (2013) Implications of PSR J0737–3039B for the Galactic NS-NS binary merger rate. Mon Not R Astron Soc 448:928–938. 10.1093/mnras/stu2729. arXiv:1308.4676
Klimenko S, Mohanty S, Rakhmanov M, Mitselmakher G (2005) Constraint likelihood analysis for a network of gravitational wave detectors. Phys Rev D 72:122002. 10.1103/PhysRevD.72.122002. arXiv:gr-qc/0508068
Klimenko S, Yakushin I, Mercer A, Mitselmakher G (2008) Coherent method for detection of gravitational wave bursts. Class Quantum Grav 25:114029. 10.1088/0264-9381/25/11/114029. arXiv:0802.3232
Klimenko S, Vedovato G, Drago M, Mazzolo G, Mitselmakher G, Pankow C, Prodi G, Re V, Salemi F, Yakushin I (2011) Localization of gravitational wave sources with networks of advanced detectors. Phys Rev D 83:102001. 10.1103/PhysRevD.83.102001. arXiv:1101.5408
Klimenko S et al (2016) Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors. Phys Rev D 93:042004. 10.1103/PhysRevD.93.042004. arXiv:1511.05999
Kruckow MU, Tauris TM, Langer N, Kramer M, Izzard RG (2018) Progenitors of gravitational wave mergers: binary evolution with the stellar grid based code ComBinE. ArXiv e-prints arXiv:1801.05433
Li X, Zhang FW, Yuan Q, Jin ZP, Fan YZ, Liu SM, Wei DM (2016) Implications of the tentative association between GW150914 and a Fermi-GBM transient. Astrophys J Lett 827:L16. 10.3847/2041-8205/827/1/L16. arXiv:1602.04460
Li X, Hu YM, Jin ZP, Fan YZ, Wei DM (2017) Neutron star-black hole coalescence rate inferred from macronova/kilonova observations. Astrophys J Lett 844:L22. 10.3847/2041-8213/aa7fb2. arXiv:1611.01760
Lindblom L, Owen BJ, Brown DA (2008) Model waveform accuracy standards for gravitational wave data analysis. Phys Rev D 78:124020. 10.1103/PhysRevD.78.124020. arXiv:0809.3844
Lipunov VM et al (2017a) First gravitational-wave burst GW150914: MASTER optical follow-up observations. Mon Not R Astron Soc 465:3656. 10.1093/mnras/stw2669. arXiv:1605.01607
Lipunov VM et al (2017b) MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys J 850:L1. 10.3847/2041-8213/aa92c0. arXiv:1710.05461
Littenberg TB, Cornish NJ (2015) Bayesian inference for spectral estimation of gravitational wave detector noise. Phys Rev D 91:084034. 10.1103/PhysRevD.91.084034. arXiv:1410.3852
Loeb A (2016) Electromagnetic counterparts to black hole mergers detected by LIGO. Astrophys J Lett 819:L21. 10.3847/2041-8205/819/2/L21. arXiv:1602.04735
Lück H et al (2010) The upgrade of GEO600. J Phys Conf Ser 228:012012. 10.1088/1742-6596/228/1/012012. arXiv:1004.0339
Lyman JD et al (2018) The optical afterglow of the short gamma-ray burst associated with GW170817. ArXiv e-prints arXiv:1801.02669
Lynch R, Vitale S, Essick R, Katsavounidis E, Robinet F (2017) Information-theoretic approach to the gravitational-wave burst detection problem. Phys Rev D 95:104046. 10.1103/PhysRevD.95.104046. arXiv:1511.05955
Lyutikov M (2016) Fermi GBM signal contemporaneous with GW150914 – an unlikely association. ArXiv e-prints arXiv:1602.07352
Mandel I, O’Shaughnessy R (2010) Compact binary coalescences in the band of ground-based gravitational-wave detectors. Class Quantum Grav 27:114007. 10.1088/0264-9381/27/11/114007. arXiv:0912.1074
Margutti R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys J Lett 848:L20. 10.3847/2041-8213/aa9057. arXiv:1710.05431
Margutti R et al (2018) The Binary Neutron Star event LIGO/VIRGO GW170817 a hundred days after merger: synchrotron emission across the electromagnetic spectrum. ArXiv e-prints arXiv:1801.03531
McCully C et al (2017) The rapid reddening and featureless optical spectra of the optical counterpart of GW170817, AT 2017gfo, during the first four days. Astrophys J Lett 848:L32. 10.3847/2041-8213/aa9111. arXiv:1710.05853
Messick C et al (2017) Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data. Phys Rev D 95:042001. 10.1103/PhysRevD.95.042001. arXiv:1604.04324
Metzger BD (2017) Kilonovae. Living Rev Relativ 20:3. 10.1007/s41114-017-0006-z. arXiv:1610.09381
Metzger BD, Berger E (2012) What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys J 746:48. 10.1088/0004-637X/746/1/48. arXiv:1108.6056
Miller J et al (2015) Prospects for doubling the range of Advanced LIGO. Phys Rev D 91:062005. 10.1103/PhysRevD.91.062005. arXiv:1410.5882
Mooley KP et al (2018) A mildly relativistic wide-angle outflow in the neutron star merger GW170817. Nature 554(7691):207. 10.1038/nature25452. arXiv:1711.11573
Morokuma T et al (2016) J-GEM follow-up observations to search for an optical counterpart of the first gravitational wave source GW150914. Publ Astron Soc Jpn 68:L9. 10.1093/pasj/psw061. arXiv:1605.03216
Morsony BJ, Workman JC, Ryan DM (2016) Modeling the afterglow of the possible Fermi-GBM event associated with GW150914. Astrophys J Lett 825:L24. 10.3847/2041-8205/825/2/L24. arXiv:1602.05529
Murase K, Kashiyama K, Mészáros P, Shoemaker I, Senno N (2016) Ultrafast outflows from black hole mergers with a minidisk. Astrophys J Lett 822:L9. 10.3847/2041-8205/822/1/L9. arXiv:1602.06938
Nicholl M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817 III. Optical and UV spectra of a blue kilonova from fast polar ejecta. Astrophys J Lett 848:L18. 10.3847/2041-8213/aa9029. arXiv:1710.05456
Nishizawa A, Berti E, Klein A, Sesana A (2016a) eLISA eccentricity measurements as tracers of binary black hole formation. Phys Rev D 94:064020. 10.1103/PhysRevD.94.064020. arXiv:1605.01341
Nishizawa A, Sesana A, Berti E, Klein A (2016b) Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements. Mon Not R Astron Soc 465:4375. 10.1093/mnras/stw2993. arXiv:1606.09295
Nissanke S, Holz DE, Hughes SA, Dalal N, Sievers JL (2010) Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys J 725:496–514. 10.1088/0004-637X/725/1/496. arXiv:0904.1017
Nissanke S, Sievers J, Dalal N, Holz D (2011) Localizing compact binary inspirals on the sky using ground-based gravitational wave interferometers. Astrophys J 739:99. 10.1088/0004-637X/739/2/99. arXiv:1105.3184
Nissanke S, Kasliwal M, Georgieva A (2013) Identifying elusive electromagnetic counterparts to gravitational wave mergers: an end-to-end simulation. Astrophys J 767:124. 10.1088/0004-637X/767/2/124. arXiv:1210.6362
Nitz AH, Dent T, Dal Canton T, Fairhurst S, Brown DA (2017) Detecting binary compact-object mergers with gravitational waves: Understanding and Improving the sensitivity of the PyCBC search. Astrophys J 849:118. 10.3847/1538-4357/aa8f50. arXiv:1705.01513
Nitz AH et al (2013) Accuracy of gravitational waveform models for observing neutron-star-black-hole binaries in Advanced LIGO. Phys Rev D 88:124039. 10.1103/PhysRevD.88.124039. arXiv:1307.1757
Ott C (2009) The gravitational wave signature of core-collapse supernovae. Class Quantum Grav 26:063001. 10.1088/0264-9381/26/6/063001. arXiv:0809.0695
Ott C, Reisswig C, Schnetter E, O’Connor E, Sperhake U, Löffler F, Diener P, Abdikamalov E, Hawke I, Burrows A (2011) Dynamics and gravitational wave signature of collapsar formation. Phys Rev Lett 106:161103. 10.1103/PhysRevLett.106.161103. arXiv:1012.1853
Owen BJ (1996) Search templates for gravitational waves from inspiraling binaries: choice of template spacing. Phys Rev D 53:6749–6761. 10.1103/PhysRevD.53.6749. arXiv:gr-qc/9511032
Owen BJ, Sathyaprakash B (1999) Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys Rev D 60:022002. 10.1103/PhysRevD.60.022002. arXiv:gr-qc/9808076
Palliyaguru NT et al (2016) Radio follow-up of gravitational wave triggers during advanced LIGO O1. Astrophys J Lett 829:L28. 10.3847/2041-8205/829/2/L28. arXiv:1608.06518
Pan Y et al (2014) Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys Rev D 89:084006. 10.1103/PhysRevD.89.084006. arXiv:1307.6232
Pankow C, Chase EA, Coughlin S, Zevin M, Kalogera V (2018) Improvements in gravitational-wave sky localization with expanded networks of interferometers. Astrophys J Lett 854(2):L25. 10.3847/2041-8213/aaacd4. arXiv:1801.02674
Paschalidis V (2017) General relativistic simulations of compact binary mergers as engines of short gamma-ray bursts. Class Quantum Grav 34:084002. 10.1088/1361-6382/aa61ce. arXiv:1611.01519
Patricelli B, Stamerra A, Razzano M, Pian E, Cella G (2018) Searching for Gamma-Ray counterparts to Gravitational Waves from merging binary neutron stars with the Cherenkov telescope array. ArXiv e-prints arXiv:1801.05167
Patricelli B et al (2016) Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries. J Cosmol Astropart Phys 1611:056. 10.1088/1475-7516/2016/11/056. arXiv:1606.06124
Perna R, Lazzati D, Giacomazzo B (2016) Short gamma-ray bursts from the merger of two black holes. Astrophys J Lett 821:L18. 10.3847/2041-8205/821/1/L18. arXiv:1602.05140
Pian E et al (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron star merger. Nature 551:67–70. 10.1038/nature24298. arXiv:1710.05858
Pitkin M, Reid S, Rowan S, Hough J (2011) Gravitational wave detection by interferometry (ground and space). Living Rev Relativ 14:5. 10.12942/lrr-2011-5. arXiv:1102.3355
Pooley D, Kumar P, Wheeler JC (2017) GW170817 most likely made a black hole. ArXiv e-prints arXiv:1712.03240
Privitera S, Mohapatra SRP, Ajith P, Cannon K, Fotopoulos N, Frei MA, Hanna C, Weinstein AJ, Whelan JT (2014) Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data. Phys Rev D 89:024003. 10.1103/PhysRevD.89.024003. arXiv:1310.5633
Prix R (2007) Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces. Class Quantum Grav 24:S481–S490. 10.1088/0264-9381/24/19/S11. arXiv:0707.0428
Punturo M et al (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quantum Grav 27:194002. 10.1088/0264-9381/27/19/194002
Pürrer M (2014) Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries. Class Quantum Grav 31:195010. 10.1088/0264-9381/31/19/195010. arXiv:1402.4146
Racusin JL et al (2017) Searching the gamma-ray sky for counterparts to gravitational wave sources: Fermi GBM and LAT observations of LVT151012 and GW151226. Astrophys J 835:82. 10.3847/1538-4357/835/1/82. arXiv:1606.04901
Rana J, Singhal A, Gadre B, Bhalerao V, Bose S (2017) An enhanced method for scheduling observations of large sky error regions for finding optical counterparts to transients. Astrophys J 838:108. 10.3847/1538-4357/838/2/108. arXiv:1603.01689
Read JS et al (2013) Matter effects on binary neutron star waveforms. Phys Rev D 88:044042. 10.1103/PhysRevD.88.044042. arXiv:1306.4065
Riess AG et al (2016) A 2.4% determination of the local value of the hubble constant. Astrophys J 826:56. 10.3847/0004-637X/826/1/56. arXiv:1604.01424
Rodriguez CL, Morscher M, Pattabiraman B, Chatterjee S, Haster CJ, Rasio FA (2015) Binary black hole mergers from globular clusters: implications for Advanced LIGO. Phys Rev Lett 115:051101. 10.1103/PhysRevLett.115.051101. arXiv:1505.00792
Rodriguez CL et al (2014) Basic parameter estimation of binary neutron star systems by the Advanced LIGO/Virgo network. Astrophys J 784:119. 10.1088/0004-637X/784/2/119. arXiv:1309.3273
Rosswog S et al (2017) Detectability of compact binary merger macronovae. Class Quantum Grav 34:104001. 10.1088/1361-6382/aa68a9. arXiv:1611.09822
Ruan JJ, Nynka M, Haggard D, Kalogera V, Evans P (2018) Brightening X-ray emission from GW170817/GRB170817A: further evidence for an outflow. Astrophys J Lett 853(1):L4. 10.3847/2041-8213/aaa4f3. arXiv:1712.02809
Ryan G, MacFadyen A (2017) Minidisks in binary black hole accretion. Astrophys J 835:199. 10.3847/1538-4357/835/2/199. arXiv:1611.00341
Sakstein J, Jain B (2017) Implications of the neutron star merger GW170817 for cosmological scalar-tensor theories. Phys Rev Lett 119:251303. 10.1103/PhysRevLett.119.251303. arXiv:1710.05893
Salafia OS, Colpi M, Branchesi M, Chassande-Mottin E, Ghirlanda G, Ghisellini G, Vergani S (2017) Where and when: optimal scheduling of the electromagnetic follow-up of gravitational-wave events based on counterpart lightcurve models. Astrophys J 846:62. 10.3847/1538-4357/aa850e. arXiv:1704.05851
Sathyaprakash B, Schutz BF (2009) Physics, astrophysics and cosmology with gravitational waves. Living Rev Relativ 12:2. 10.12942/lrr-2009-2. arXiv:0903.0338
Sathyaprakash B et al (2012) Scientific objectives of Einstein telescope. Class Quantum Grav 29:124013. 10.1088/0264-9381/29/12/124013. arXiv:1206.0331
Sathyaprakash BS, Dhurandhar SV (1991) Choice of filters for the detection of gravitational waves from coalescing binaries. Phys Rev D 44:3819–3834. 10.1103/PhysRevD.44.3819
Savchenko V et al (2016) INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914. Astrophys J Lett 820:L36. 10.3847/2041-8205/820/2/L36. arXiv:1602.04180
Savchenko V et al (2017a) INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys J Lett 848:L15. 10.3847/2041-8213/aa8f94. arXiv:1710.05449
Savchenko V et al (2017b) INTEGRAL observations of GW170104. Astrophys J Lett 846:L23. 10.3847/2041-8213/aa87ae. arXiv:1707.03719
Schmidt P, Ohme F, Hannam M (2015) Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter. Phys Rev D 91:024043. 10.1103/PhysRevD.91.024043. arXiv:1408.1810
Schnittman JD (2013) Astrophysics of super-massive black hole mergers. Class Quantum Grav 30:244007. 10.1088/0264-9381/30/24/244007. arXiv:1307.3542
Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323:310–311. 10.1038/323310a0
Schutz BF (2011) Networks of gravitational wave detectors and three figures of merit. Class Quantum Grav 28:125023. 10.1088/0264-9381/28/12/125023. arXiv:1102.5421
Serino M, Kawai N, Negoro H, Mihara T, Masumitsu T, Nakahira S (2017) X-ray upper limits of GW151226 with MAXI. Publ Astron Soc Jpn 69:85. 10.1093/pasj/psx086. arXiv:1708.01352
Sesana A (2016) Prospects for multiband gravitational-wave astronomy after GW150914. Phys Rev Lett 116:231102. https://doi.org/10.1103/PhysRevLett.116.231102. arXiv:1602.06951
Shappee BJ et al (2017) Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science. https://doi.org/10.1126/science.aaq0186, arXiv:1710.05432
Sidery T et al (2014) Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison. Phys Rev D 89:084060. 10.1103/PhysRevD.89.084060. arXiv:1312.6013
Siebert MR et al (2017) The unprecedented properties of the first electromagnetic counterpart to a gravitational wave source. Astrophys J Lett 848:L26. 10.3847/2041-8213/aa905e. arXiv:1710.05440
Singer LP, Price LR (2016) Rapid Bayesian position reconstruction for gravitational-wave transients. Phys Rev D 93:024013. 10.1103/PhysRevD.93.024013. arXiv:1508.03634
Singer LP et al (2014) The first two years of electromagnetic follow-up with Advanced LIGO and Virgo. Astrophys J 795:105. 10.1088/0004-637X/795/2/105. arXiv:1404.5623
Singer LP et al (2016a) Going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. Astrophys J Lett 829:L15. 10.3847/2041-8205/829/1/L15. arXiv:1603.07333
Singer LP et al (2016b) Supplement: going the distance: mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up. Astrophys J Suppl 226:10. 10.3847/0067-0049/226/1/10. arXiv:1605.04242
Smartt SJ et al (2016a) A search for an optical counterpart to the gravitational wave event GW151226. Astrophys J Lett 827:L40. 10.3847/2041-8205/827/2/L40. arXiv:1606.04795
Smartt SJ et al (2016b) Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational wave source GW150914. Mon Not R Astron Soc 462:4094. 10.1093/mnras/stw1893. arXiv:1602.04156
Smartt SJ et al (2017) A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551(7678):75–79. 10.1038/nature24303. arXiv:1710.05841
Smith R, Field SE, Blackburn K, Haster CJ, Pürrer M, Raymond V, Schmidt P (2016) Fast and accurate inference on gravitational waves from precessing compact binaries. Phys Rev D 94:044031. 10.1103/PhysRevD.94.044031. arXiv:1604.08253
Soares-Santos M et al (2016) A dark energy camera search for an optical counterpart to the first Advanced LIGO gravitational wave event GW150914. Astrophys J Lett 823:L33. 10.3847/2041-8205/823/2/L33. arXiv:1602.04198
Soares-Santos M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817 I. Discovery of the optical counterpart using the dark energy camera. Astrophys J Lett 848:L16. 10.3847/2041-8213/aa9059. arXiv:1710.05459
Somiya K (2012) Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector. Class Quantum Grav 29:124007. 10.1088/0264-9381/29/12/124007. arXiv:1111.7185
Stalder B et al (2017) Observations of the GRB afterglow ATLAS17aeu and its possible association with GW170104. Astrophys J 850:149. 10.3847/1538-4357/aa95c1. arXiv:1706.00175
Staley A et al (2014) Achieving resonance in the Advanced LIGO gravitational-wave interferometer. Class Quantum Grav 31:245010. 10.1088/0264-9381/31/24/245010
Stone NC, Metzger BD, Haiman Z (2017) Assisted inspirals of stellar mass black holes embedded in AGN disks. Mon Not R Astron Soc 464:946–954. 10.1093/mnras/stw2260. arXiv:1602.04226
Sutton P (2013) A rule of thumb for the detectability of gravitational-wave bursts. ArXiv e-prints arXiv:1304.0210
Sutton PJ et al (2010) X-pipeline: an analysis package for autonomous gravitational-wave burst searches. New J Phys 12:053034. 10.1088/1367-2630/12/5/053034. arXiv:0908.3665
Tanvir NR et al (2017) The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys J Lett 848:L27. 10.3847/2041-8213/aa90b6. arXiv:1710.05455
Taracchini A et al (2014) Effective-one-body model for black-hole binaries with generic mass ratios and spins. Phys Rev D 89:061502. 10.1103/PhysRevD.89.061502. arXiv:1311.2544
Tavani M et al (2016) AGILE observations of the gravitational wave event GW150914. Astrophys J Lett 825:L4. 10.3847/2041-8205/825/1/L4. arXiv:1604.00955
Thrane E, Coughlin M (2013) Searching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies. Phys Rev D 88:083010. 10.1103/PhysRevD.88.083010. arXiv:1308.5292
Thrane E et al (2011) Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers. Phys Rev D 83:083004. 10.1103/PhysRevD.83.083004. arXiv:1012.2150
Thrane E, Mandic V, Christensen N (2015) Detecting very long-lived gravitational-wave transients lasting hours to weeks. Phys Rev S 91:104021. 10.1103/PhysRevD.91.104021. arXiv:1501.06648
Troja E, Read AM, Tiengo A, Salvaterra R (2016) XMM-Newton Slew Survey observations of the gravitational wave event GW150914. Astrophys J Lett 822:L8. 10.3847/2041-8205/822/1/L8. arXiv:1603.06585
Troja E et al (2017) The X-ray counterpart to the gravitational wave event GW 170817. Nature 551:71–74. 10.1038/nature24290. arXiv:1710.05433
Usman SA, Nitz AH, Harry IW, Biwer CM, Brown DA, Cabero M, Capano CD, Dal Canton T, Dent T, Fairhurst S, Kehl MS, Keppel D, Krishnan B, Lenon A, Lundgren A, Nielsen AB, Pekowsky LP, Pfeiffer HP, Saulson PR, West M, Willis JL (2016) An improved pipeline to search for gravitational waves from compact binary coalescence. Class Quantum Grav 33:215004. 10.1088/0264-9381/33/21/215004. arXiv:1508.02357
van der Sluys MV, Roever C, Stroeer A, Christensen N, Kalogera V, Meyer R, Vecchio A (2008) Gravitational-wave astronomy with inspiral signals of spinning compact-object binaries. Astrophys J Lett 688:L61. 10.1086/595279. arXiv:0710.1897
Valenti S, Sand DJ, Yang S, Cappellaro E, Tartaglia L, Corsi A, Jha SW, Reichart DE, Haislip J, Kouprianov V (2017) The discovery of the electromagnetic counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck. Astrophys J Lett 848:L24. 10.3847/2041-8213/aa8edf. arXiv:1710.05854
Vallisneri M, Kanner J, Williams R, Weinstein A, Stephens B (2015) The LIGO open science center. J Phys Conf Ser 610:012021. 10.1088/1742-6596/610/1/012021. arXiv:1410.4839
Vangioni E, Goriely S, Daigne F, François P, Belczynski K (2016) Cosmic neutron star merger rate and gravitational waves constrained by the r-process nucleosynthesis. Mon Not R Astron Soc 455:17–34. 10.1093/mnras/stv2296. arXiv:1501.01115
Vecchio A (2004) LISA observations of rapidly spinning massive black hole binary systems. Phys Rev D 70:042001. 10.1103/PhysRevD.70.042001. arXiv:astro-ph/0304051
Veitch J, Mandel I, Aylott B, Farr B, Raymond V, Rodriguez C, van der Sluys M, Kalogera V, Vecchio A (2012) Estimating parameters of coalescing compact binaries with proposed advanced detector networks. Phys Rev D 85:104045. 10.1103/PhysRevD.85.104045. arXiv:1201.1195
Veitch J, Raymond V, Farr B, Farr W, Graff P, Vitale S, Aylott B, Blackburn K, Christensen N, Coughlin M, Del Pozzo W, Feroz F, Gair J, Haster CJ, Kalogera V, Littenberg T, Mandel I, O’Shaughnessy R, Pitkin M, Rodriguez C, Röver C, Sidery T, Smith R, Van Der Sluys M, Vecchio A, Vousden W, Wade L (2015) Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys Rev D 91:042003. 10.1103/PhysRevD.91.042003. arXiv:1409.7215
Verrecchia F et al (2017) AGILE observations of the gravitational-wave source GW170104. Astrophys J Lett 847:L20. 10.3847/2041-8213/aa8224. arXiv:1706.00029
Villar VA et al (2017) The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys J Lett 851:L21. 10.3847/2041-8213/aa9c84. arXiv:1710.11576
Vinciguerra S, Veitch J, Mandel I (2017) Accelerating gravitational wave parameter estimation with multi-band template interpolation. Class Quantum Grav 34:115006. 10.1088/1361-6382/aa6d44. arXiv:1703.02062
Vitale S (2016) Multiband gravitational-wave astronomy: parameter estimation and tests of general relativity with space- and ground-based detectors. Phys Rev Lett 117:051102. 10.1103/PhysRevLett.117.051102. arXiv:1605.01037
Vitale S, Zanolin M (2011) Application of asymptotic expansions for maximum likelihood estimators’ errors to gravitational waves from binary mergers: the network case. Phys Rev D 84:104020. 10.1103/PhysRevD.84.104020. arXiv:1108.2410
Vitale S, Del Pozzo W, Li TG, Van Den Broeck C, Mandel I, Aylott B, Veitch J (2012) Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Phys Rev D 85:064034. 10.1103/PhysRevD.85.064034. arXiv:1111.3044
Vitale S, Lynch R, Veitch J, Raymond V, Sturani R (2014) Measuring the spin of black holes in binary systems using gravitational waves. Phys Rev Lett 112:251101. 10.1103/PhysRevLett.112.251101. arXiv:1403.0129
Vitale S et al (2016) On similarity of binary black hole gravitational-wave skymaps: to observe or to wait? Mon Not R Astron Lett 466:L78. 10.1093/mnrasl/slw239. arXiv:1611.02438
Woosley SE (2016) The progenitor of GW150914. Astrophys J Lett 824:L10. 10.3847/2041-8205/824/1/L10. arXiv:1603.00511
Yakumin K et al (2010) Gravitational waves from core collapse supernovae. Class Quantum Grav 27:194005. 10.1088/0264-9381/27/19/194005. arXiv:1005.0779
Yamazaki R, Asano K, Ohira Y (2016) Electromagnetic afterglows associated with gamma-ray emission coincident with binary black hole merger event GW150914. Progr Theor Exp Phys 2016:051E01. https://doi.org/10.1093/ptep/ptw042. arXiv:1602.05050
Yang S, Valenti S, Cappellaro E, Sand DJ, Tartaglia L, Corsi A, Reichart DE, Haislip J, Kouprianov V (2017) An empirical limit on the kilonova rate from the DLT40 one day cadence Supernova Survey. Astrophys J Lett 851:L48. 10.3847/2041-8213/aaa07d. arXiv:1710.05864
Yoshida M et al (2017) J-GEM follow-up observations of the gravitational wave source GW151226. Publ Astron Soc Jpn 69:12. 10.1093/pasj/psw113. arXiv:1611.01588
Zhang BB et al (2018) A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nature Commun 9:447. 10.1038/s41467-018-02847-3. arXiv:1710.05851