[en] Ultrathin ferromagnets with frustrated exchange and the Dzyaloshinskii-Moriya interaction can support topological solitons such as skyrmions and antiskyrmions, which are metastable and can be considered as particle-antiparticle counterparts. When spin-orbit torques are applied, the motion of an isolated antiskyrmion driven beyond its Walker limit can generate skyrmion-antiskyrmion pairs. Here, we use atomistic spin dynamics simulations to shed light on the scattering processes involved in this pair generation. Under certain conditions a proliferation of these particles and antiparticles can appear with a growth rate and production asymmetry that depend on the strength of the chiral interactions and the dissipative component of the spin-orbit torques. These features are largely determined by scattering processes between antiskyrmions, which can be elastic, result in bound states, or annihilation.
Disciplines :
Physics
Author, co-author :
Ritzmann, Ulrike
Desplat, Louise
Dupé, Bertrand ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Camley, Robert E.
Kim, Joo-Von
Language :
English
Title :
Asymmetric skyrmion-antiskyrmion production in ultrathin ferromagnetic films
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
P. Coleman, Many body physics: Unfinished revolution, Ann. Henri Poincaré 4, 559 (2003) 1424-0637 10.1007/s00023-003-0943-9.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature (London) 438, 197 (2005) NATUAS 0028-0836 10.1038/nature04233.
L. Fu and C. L. Kane, Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator, Phys. Rev. Lett. 100, 096407 (2008) PRLTAO 0031-9007 10.1103/PhysRevLett.100.096407.
V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336, 1003 (2012) SCIEAS 0036-8075 10.1126/science.1222360.
L. P. Rokhinson, X. Liu, and J. K. Furdyna, The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles, Nat. Phys. 8, 795 (2012) 1745-2473 10.1038/nphys2429.
H. Bartolomei, M. Kumar, R. Bisognin, A. Marguerite, J.-M. Berroir, E. Bocquillon, B. Plaçais, A. Cavanna, Q. Dong, U. Gennser, Y. Jin, and G. Fève, Fractional statistics in anyon collisions, Science 368, 173 (2020) SCIEAS 0036-8075 10.1126/science.aaz5601.
I. Dzyaloshinsky, A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids 4, 241 (1958) JPCSAW 0022-3697 10.1016/0022-3697(58)90076-3.
T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960) PHRVAO 0031-899X 10.1103/PhysRev.120.91.
T. Moriya, New Mechanism of Anisotropic Superexchange Interaction, Phys. Rev. Lett. 4, 228 (1960) PRLTAO 0031-9007 10.1103/PhysRevLett.4.228.
A. Fert and P. M. Levy, Role of Anisotropic Exchange Interactions in Determining the Properties of Spin-Glasses, Phys. Rev. Lett. 44, 1538 (1980) PRLTAO 0031-9007 10.1103/PhysRevLett.44.1538.
A. Crépieux and C. Lacroix, Dzyaloshinsky-Moriya interactions induced by symmetry breaking at a surface, J. Magn. Magn. Mater. 182, 341 (1998) JMMMDC 0304-8853 10.1016/S0304-8853(97)01044-5.
A. N. Bogdanov and U. K. Rößler, Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers, Phys. Rev. Lett. 87, 037203 (2001) PRLTAO 0031-9007 10.1103/PhysRevLett.87.037203.
A. N. Bogdanov and D. A. Yablonskii, Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets, J. Exp. Theor. Phys. 68, 101 (1989).
A. Bogdanov and A. Hubert, Thermodynamically stable magnetic vortex states in magnetic crystals, J. Magn. Magn. Mater. 138, 255 (1994) JMMMDC 0304-8853 10.1016/0304-8853(94)90046-9.
T. H. R. Skyrme, A non-linear field theory, Proc. R. Soc. London, Ser. A 260, 127 (1961) PRLAAZ 0080-4630 10.1098/rspa.1961.0018.
T. H. R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31, 556 (1962) NUPHA7 0029-5582 10.1016/0029-5582(62)90775-7.
N. S. Kiselev, A. N. Bogdanov, R. Schäfer, and U. K. Rößler, Chiral skyrmions in thin magnetic films: New objects for magnetic storage technologies?, J. Phys. D 44, 392001 (2011) JPAPBE 0022-3727 10.1088/0022-3727/44/39/392001.
J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol. 8, 839 (2013) 1748-3387 10.1038/nnano.2013.210.
P. Sutcliffe, Skyrmion Knots in Frustrated Magnets, Phys. Rev. Lett. 118, 247203 (2017) PRLTAO 0031-9007 10.1103/PhysRevLett.118.247203.
W. Thomson, On Vortex Atoms, Proc. R. Soc. Edinburgh 6, 94 (1867) 0370-1646 10.1017/S0370164600045430.
W. Koshibae and N. Nagaosa, Creation of skyrmions and antiskyrmions by local heating, Nat. Commun. 5, 5148 (2014) 2041-1723 10.1038/ncomms6148.
M. Stier, W. Häusler, T. Posske, G. Gurski, and M. Thorwart, Skyrmion-Anti-Skyrmion Pair Creation by In-Plane Currents, Phys. Rev. Lett. 118, 267203 (2017) PRLTAO 0031-9007 10.1103/PhysRevLett.118.267203.
K. Everschor-Sitte, M. Sitte, T. Valet, A. Abanov, and J. Sinova, Skyrmion production on demand by homogeneous DC currents, New J. Phys. 19, 092001 (2018) NJOPFM 1367-2630 10.1088/1367-2630/aa8569.
T. Yokouchi, S. Sugimoto, B. Rana, S. Seki, N. Ogawa, S. Kasai, and Y. Otani, Creation of magnetic skyrmions by surface acoustic waves, Nat. Nanotechnol. 15, 361 (2020) 1748-3387 10.1038/s41565-020-0661-1.
U. Ritzmann, S. von Malottki, J.-V. Kim, S. Heinze, J. Sinova, and B. Dupé, Trochoidal motion and pair generation in skyrmion and antiskyrmion dynamics under spin-orbit torques, Nat. Electron. 1, 451 (2018) 2520-1131 10.1038/s41928-018-0114-0.
A. O. Leonov and M. Mostovoy, Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet, Nat. Commun. 6, 8275 (2015) 2041-1723 10.1038/ncomms9275.
S.-Z. Lin and S. Hayami, Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions, Phys. Rev. B 93, 064430 (2016) 2469-9950 10.1103/PhysRevB.93.064430.
L. Rózsa, K. Palotás, A. Deák, E. Simon, R. Yanes, L. Udvardi, L. Szunyogh, and U. Nowak, Formation and stability of metastable skyrmionic spin structures with various topologies in an ultrathin film, Phys. Rev. B 95, 094423 (2017) 2469-9950 10.1103/PhysRevB.95.094423.
B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schütz, Magnetic vortex core reversal by excitation with short bursts of an alternating field, Nature (London) 444, 461 (2006) NATUAS 0028-0836 10.1038/nature05240.
A. D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Sov. Phys. Usp. 34, 392 (1991) 10.1070/PU1991v034n05ABEH002497.
N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. Von Bergmann, A. Kubetzka, and R. Wiesendanger, Writing and deleting single magnetic skyrmions, Science 341, 636 (2013) SCIEAS 0036-8075 10.1126/science.1240573.
B. Dupé, M. Hoffmann, C. Paillard, and S. Heinze, Tailoring magnetic skyrmions in ultra-thin transition metal films, Nat. Commun. 5, 4030 (2014) 2041-1723 10.1038/ncomms5030.
M. Böttcher, S. Heinze, S. Egorov, J. Sinova, and B. Dupé, B-T phase diagram of Pd/Fe/Ir(111) computed with parallel tempering Monte Carlo, New J. Phys. 20, 103014 (2019) NJOPFM 1367-2630 10.1088/1367-2630/aae282.
L. Desplat, J.-V. Kim, and R. L. Stamps, Paths to annihilation of first-and second-order (anti)skyrmions via (anti)meron nucleation on the frustrated square lattice, Phys. Rev. B 99, 174409 (2019) 2469-9950 10.1103/PhysRevB.99.174409.
P. F. Bessarab, V. M. Uzdin, and H. Jonsson, Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmions and antivortex annihilation, Comput. Phys. Commun. 196, 335 (2015) CPHCBZ 0010-4655 10.1016/j.cpc.2015.07.001.
X. Zhang, J. Xia, Y. Zhou, X. Liu, H. Zhang, and M. Ezawa, Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition, Nat. Commun. 8, 1717 (2017) 2041-1723 10.1038/s41467-017-01785-w.
A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U. K. Rößler, C. Felser, and S. S. P. Parkin, Magnetic antiskyrmions above room temperature in tetragonal Heusler materials, Nature (London) 548, 561 (2017) NATUAS 0028-0836 10.1038/nature23466.
M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff, N. S. Kiselev, C. Melcher, and S. Blügel, Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions, Nat. Commun. 8, 308 (2017) 2041-1723 10.1038/s41467-017-00313-0.
L. Camosi, N. Rougemaille, O. Fruchart, J. Vogel, and S. Rohart, Micromagnetics of antiskyrmions in ultrathin films, Phys. Rev. B 97, 134404 (2018) 2469-9950 10.1103/PhysRevB.97.134404.
A. Raeliarijaona, R. Nepal, and A. A. Kovalev, Boundary twists, instabilities, and creation of skyrmions and antiskyrmions, Phys. Rev. Mater. 2, 124401 (2018) 2475-9953 10.1103/PhysRevMaterials.2.124401.
J. Jena, B. Göbel, T. Ma, V. Kumar, R. Saha, I. Mertig, C. Felser, and S. S. P. Parkin, Elliptical Bloch skyrmion chiral twins in an antiskyrmion system, Nat. Commun. 11, 1115 (2020) 2041-1723 10.1038/s41467-020-14925-6.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.