SALDI; Mass spectrometry imaging; Nanoparticles; Dual-polarity; Lipidomics; Kendrick mass defect; FT-ICR
Abstract :
[en] Lipids are biomolecules of crucial importance involved in critical biological functions. Yet, lipid content determination using mass spectrometry is still challenging due to their rich structural diversity. Preferential ionisation of the different lipid species in the positive or negative polarity is common, especially when using soft ionisation mass spectrometry techniques. Here, we demonstrate the potency of a dual-polarity approach using surface-assisted laser desorption/ionisation coupled to Fourier transform-ion cyclotron resonance (SALDI FT-ICR) mass spectrometry imaging (MSI) combined with Kendrick mass defect data filtering to (i) identify the lipids detected in both polarities from the same tissue section and (ii) show the complementarity of the dual-polarity data, both regarding the lipid coverage and the spatial distributions of the various lipids. For this purpose, we imaged the same mouse brain section in the positive and negative ionisation modes, on alternate pixels, in a SALDI FT-ICR MS imaging approach using gold nanoparticles (AuNPs) as dual-polarity nanosubstrates. Our study demonstrates, for the first time, the feasibility of (i) a dual-polarity SALDI-MSI approach on the same tissue section, (ii) using AuNPs as nanosubstrates combined with a FT-ICR mass analyser and (iii) the Kendrick mass defect data filtering applied to SALDI-MSI data. In particular, we show the complementarity in the lipids detected both in a given ionisation mode and in the two different ionisation modes.
Research Center/Unit :
MolSys - Molecular Systems - ULiège Mass Spectrometry Laboratory
Disciplines :
Chemistry
Author, co-author :
Müller, Wendy ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Verdin, Alexandre ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Kune, Christopher ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Far, Johann ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
De Pauw, Edwin ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Malherbe, Cédric ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Eppe, Gauthier ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique inorganique
Language :
English
Title :
Dual-polarity SALDI FT-ICR MS imaging and Kendrick mass defect data filtering for lipid analysis
Publication date :
2021
Journal title :
Analytical and Bioanalytical Chemistry
ISSN :
1618-2642
eISSN :
1618-2650
Publisher :
Springer, Germany
Special issue title :
Mass Spectrometry Imaging 2.0
Volume :
413
Issue :
10
Pages :
2821–2830
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FEDER - Fonds Européen de Développement Régional
Ageta H, Asai S, Sugiura Y, Goto-Inoue N, Zaima N, Setou M. Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol. 2009;42:16–23.
Dufresne M, Masson J-F, Chaurand P. Sodium-doped gold-assisted laser desorption ionization for enhanced imaging mass spectrometry of triacylglycerols from thin tissue sections. Anal Chem. 2016;88:6018–25.
Berry KAZ, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev. 2011;111:6491–512.
Thomas A, Charbonneau JL, Fournaise E, Chaurand P. Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal Chem. 2012;84:2048–54.
Huang P, Huang C-Y, Lin T-C, Lin L-E, Yang E, Lee C, et al. Toward the rational design of universal dual polarity matrix for MALDI mass spectrometry. Anal Chem. 2020;92(10):7139–45.
Jackson SN, Woods AS. Direct profiling of tissue lipids by MALDI-TOFMS. J Chromatogr B. 2009;877:2822–9.
Li M, Yang L, Bai Y, Liu H. Analytical methods in lipidomics and their applications. Anal Chem. 2014;86:161–75.
Goto-Inoue N, Hayasaka T, Zaima N, Setou M. Imaging mass spectrometry for lipidomics. Biochim Biophys Acta. 1811;2011:961–9.
Murphy RC, Hankin JA, Barkley RM. Imaging of lipid species by MALDI mass spectrometry. J Lipid Res. 2009;April Supplement:317–22.
Gode D, Volmer DA. Lipid imaging by mass spectrometry - a review. Analyst. 2013;138:1289–315.
Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50(April Supplement):S9–14.
Ellis SR, Cappell J, Potocnil NO, Balluff B, Hamaide J, Van der Linden A, et al. More from less: high-throughput dual polarity lipid imaging of biological tissues. Analyst. 2016;141(12):3832–41.
Schuhmann K, Almeida R, Baumert M, Herzog R, Bornstein SR, Shevchenko A. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J Mass Spectrom. 2012;47:96–104.
Hsiao C, Hong C, Liu B, Chen CW, Wu C, Wang Y. Comprehensive molecular imaging of photolabile surface samples with synchronized dual-polarity time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:834–42.
Feenstra AD, Hansen RL, Lee YJ. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed: toward mass spectrometry imaging of an untargeted metabolome. Analyst. 2015;140(21):7293–304.
Guo S, Wang Y, Zhou D, Li Z. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Sci Rep. 2014;4(5959):1–9.
Kaya I, Jennische E, Langer S, Malmberg P. Dual polarity MALDI imaging mass spectrometry on the same pixel points reveals spatial lipid localizations at high-spatial resolutions in rat small intestine. Anal Methods. 2018;10:2428–35.
Li B, Sun R, Gordon A, Ge J, Zhang Y, Li P, et al. 3-Aminophthalhydrazide (luminol) as a matrix for dual-polarity MALDI MS imaging. Anal Chem. 2019;91:8221–8.
Tsai S, Chen CW, Huang LCL, Huang M, Chen C, Wang Y. Simultaneous mass analysis of positive and negative ions using a dual-polarity time-of-flight mass spectrometer. Anal Chem. 2006;78:7729–34.
Schnapp A, Niehoff A, Koch A, Dreisewerd K. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates. Methods. 2016;104:194–203.
Ellis SR, Brown SH, in het Panhuis M, Blanksby SJ, Mitchell TW. Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res. 2013;52:329–53.
Shanta SR, Zhou L-H, Park YS, Kim YH, Kim Y, Kim KP. Binary matrix for MALDI imaging mass spectrometry of phospholipids in both ion modes. Anal Chem. 2011;83:1252–9.
Jackson SN, Baldwin K, Muller L, Womack VM, Schultz JA, Balaban C, et al. Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles. Anal Bioanal Chem. 2014;406:1377–86.
Muller L, Kailas A, Jackson SN, Roux A, Barbacci DC, Schultz JA, et al. Lipid imaging within the normal rat kidney using silver nanoparticles by matrix-assisted laser desorption/ionization mass spectrometry. Kidney Int. 2015;88(1):186–92.
Muller L, Baldwin K, Barbacci DC, Jackson SN, Roux A, Balaban CD, et al. Laser desorption/ionization mass spectrometric imaging of endogenous lipids from rat brain tissue implanted with silver nanoparticles. J Am Soc Mass Spectrom. 2017;28:1716–28.
Guan M, Zhang Z, Li S, Liu J, Liu L, Yang H, et al. Silver nanoparticles as matrix for MALDI FTICR MS profiling and imaging of diverse lipids in brain. Talanta. 2018;179:624–31.
Dufresne M, Thomas A, Breault-Turcot J, Masson J-F, Chaurand P. Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal Chem. 2013;85:3318–24.
Goto-Inoue N, Hayasaka T, Zaima N, Kashiwagi Y, Yamamoto M, Nakamoto M, et al. The detection of glycosphingolipids in brain tissue sections by imaging mass spectrometry using gold nanoparticles. J Am Soc Mass Spectrom. 2010;21:1940–3.
Phan NTN, Said Mohammadi A, Dowlatshahi Pour M, Ewing AG. Laser desorption ionization mass spectrometry imaging of Drosophila brain using matrix sublimation versus modification with nanoparticles. Anal Chem. 2016;88:1734–41.
Jackson SN, Ugarov M, Egan T, Post JD, Langlais D, Schultz JA, et al. MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom. 2007;42:1093–8.
Tempez A, Ugarov M, Egan T, Schultz JA, Novikov A, Della-Negra S, et al. Matrix implanted laser desorption ionization (MILDI) combined with ion mobility-mass spectrometry for bio-surface analysis research articles. J Proteome Res. 2005;4:540–5.
Vidova V, Novak P, Strohalm M, Po J, Havlicek V, Volny M. Laser desorption-ionization of lipid transfers: tissue mass spectrometry imaging without MALDI matrix. Anal Chem. 2010;82(12):4994–7.
Fincher JA, Dyer JE, Korte AR, Yadavilli S, Morris NJ, Vertes A. Matrix-free mass spectrometry imaging of mouse brain tissue sections on silicon nanopost arrays. J Comp Neurol. 2019;527(13):2101–21.
Fincher JA, Korte AR, Dyer JE, Yadavilli S, Morris NJ, Jones DR, et al. Mass spectrometry imaging of triglycerides in biological tissues by laser desorption ionization from silicon nanopost arrays. J Mass Spectrom. 2020;55(4):e4443.
Fincher JA, Jones DR, Korte AR, Dyer JE, Parlanti P, Popratiloff A, et al. Mass spectrometry imaging of lipids in human skin disease model hidradenitis suppurativa by laser desorption ionization from silicon nanopost arrays. Sci Rep. 2019;9(1):1–10.
Hsu PY, Ge L, Li X, Stark AY, Wesdemiotis C, Niewiarowski PH, et al. Direct evidence of phospholipids in gecko footprints and spatula – substrate contact interface detected using surface-sensitive spectroscopy. J R Soc Interface. 2012;9:657–64.
Patti GJ, Shriver LP, Wassif CA, Woo H, Uritboonthai W, Apon J, et al. Nanostructure-initiator mass spectrometry (NIMS) imaging of brain cholesterol metabolites in Smith-Lemli-Opitz syndrome. Neuroscience. 2010;170:858–64.
Tata A, Fernandes AMAP, Santos VG, Alberici RM, Araldi D, Parada CA, et al. Nanoassisted laser desorption-ionization-MS imaging of tumors. Anal Chem. 2012;84:6341–5.
Cha S, Yeung ES. Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem. 2007;79(6):2373–85.
Wu Q, Chu JL, Rubakhin SS, Gillette MU, Sweedler JV. Dopamine-modified TiO2 monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity. Chem Sci. 2017;8:3926–38.
Shrivas K, Hayasaka T, Sugiura Y, Setou M. Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry. Anal Chem. 2011;83:7283–9.
Hansen RL, Dueñas ME, Lee YJ. Sputter-coated metal screening for small molecule analysis and high-spatial resolution imaging in laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom. 2019;30:299–308.
Kune C, McCann A, La Rocca R, Arguelles Arias A, Tiquet M, Van Kruining D, et al. Rapid visualization of chemically related compounds using Kendrick mass defect as a filter in mass spectrometry imaging. Anal Chem. 2019;91:13112–8.
Lerno LA, German JB, Lebrilla CB. Method for the identification of lipid classes based on referenced Kendrick mass analysis. Anal Chem. 2010;82:4236–45.
Tiquet M, La Rocca R, Van Kruining D, Martinez-Martinez P, Eppe G, De Pauw E, Quinton L, Far J. Mass spectrometry imaging using dynamically harmonized FT-ICR at million resolving power: rationalizing and optimizing sample preparation and instrumental parameters. ChemRxiv. 2020. https://doi.org/10.26434/chemrxiv.13013900.v1.
Peck B, Schulze A. Lipid desaturation – the next step in targeting lipogenesis in cancer ? FEBS J. 2016;283:2767–78.
Spasov VA, Shi Y, Ervin KM. Time-resolved photodissociation and threshold collision- induced dissociation of anionic gold clusters. Chem Phys. 2000;262:75–91.
Fincher JA, Korte AR, Yadavilli S, Morris NJ, Vertes A. Multimodal imaging of biological tissues using combined MALDI and NAPA-LDI mass spectrometry for enhanced molecular coverage. Analyst. 2020. 10.1039/D0AN00836B.
Li J, Condello S, Thomes-Pepin J, Hurley TD, Matei D, Cheng J-X. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell. 2017;20:303–14.
Hagen RM, Rodriguez-Cuenca S, Vidal-Puig A. An allostatic control of membrane lipid composition by SREBP1. FEBS Lett. 2010;584:2689–98.